A Derivation of recovery channel for bit flip error

steve1763
Messages
13
Reaction score
0
TL;DR Summary
I have found a derivation of the recovery channel for a bit flip error (using the derivation of the Knill-Laflamme condition), but dont quite understand it.
In general, if R is the recovery channel of an error channel ε, with state ρ, then
Screenshot 2021-07-27 at 15.18.43.png

and according to these lecture slides, we get the final result highlighted in red for a bit flip error channel. I am simply asking how one reaches this final result. Thank you (a full-ish derivation can be found at https://orion.math.iastate.edu/ytpoon/publication/qecc1.pdf on pages 6-7, but for some reason i still don't understand how one gets to the final answer).

Screenshot 2021-07-27 at 15.20.15.png
 
Physics news on Phys.org
To get the final result, we start by applying the definition of recovery channel:\begin{align}R(\rho) &= \sum_i A_i \rho A_i^\dagger \\&= \sum_i A_i \rho A_i^\dagger \sum_j B_j \rho B_j^\dagger \\&= \sum_{i,j} A_i \rho A_i^\dagger B_j \rho B_j^\dagger\end{align}Now, for a bit flip error channel, we have $A_i = \sigma_x^i$ and $B_j = \sigma_x^j$. Substituting these values into the equation above gives us\begin{align}R(\rho) &= \sum_{i,j} \sigma_x^i \rho \sigma_x^{i\dagger} \sigma_x^j \rho \sigma_x^{j\dagger} \\&= \sum_{i,j} \sigma_x^i \rho \sigma_x^i \sigma_x^j \rho \sigma_x^j \\&= \sum_{i,j} \sigma_x^{i+j} \rho \sigma_x^{i+j} \\&= \sum_k \sigma_x^k \rho \sigma_x^k\end{align}where $k = i + j$. This is the final result.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top