Derive ## a^{7}\equiv a\pmod {42} ## for all ## a ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Derive
AI Thread Summary
The discussion focuses on proving that \( a^{7} \equiv a \pmod{42} \) for all integers \( a \). It utilizes Fermat's theorem, demonstrating that \( a \equiv 1 \pmod{2} \), \( a^{2} \equiv 1 \pmod{3} \), and \( a^{6} \equiv 1 \pmod{7} \). The proof shows that these congruences lead to \( a^{7} \equiv a \) under each modulus, and since 2, 3, and 7 are coprime, the result holds for \( \pmod{42} \). The discussion also suggests a more concise way to express the congruences. Ultimately, the conclusion reaffirms that \( a^{7} \equiv a \pmod{42} \) for all \( a \).
Math100
Messages
813
Reaction score
229
Homework Statement
Derive the following congruence:
## a^{7}\equiv a\pmod {42} ## for all ## a ##.
Relevant Equations
None.
Proof:

Observe that ## 42=6\cdot 7=2\cdot 3\cdot 7 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
Thus
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{6}\equiv 1\pmod {2}\implies a^{7}\equiv a\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{6}\equiv 1\pmod {3}\implies a^{7}\equiv a\pmod {3}\\
&a^{6}\equiv 1\pmod {7}\implies a^{7}\equiv a\pmod {7}.\\
\end{align*}
Therefore, ## a^{7}\equiv a\pmod {42} ## for all ## a ##.
 
Physics news on Phys.org
Fermat's theorem doesn't apply to all ##a##.
 
Then what should we apply here without the Fermat's theorem?
 
Math100 said:
Then what should we apply here without the Fermat's theorem?
You have used Fermat's theorem in the version ##\operatorname{gcd}(a,p)=1.##
The general version says ##a^p\equiv a\pmod{p}.## Try that one.
 
Proof:

Observe that ## 42=6\cdot 7=2\cdot 3\cdot 7 ##.
Applying the Fermat's theorem produces:
## a^{2}\equiv a\pmod {2}, a^{3}\equiv a\pmod {3} ## and ## a^{7}\equiv a\pmod {7} ##.
Thus
\begin{align*}
&a^{2}\equiv a\pmod {2}\implies a^{6}\equiv a^{3}\pmod {2}\\
&\implies a^{7}\equiv a^{4}\pmod {2}\implies a^{7}\equiv (a^{2}\cdot a^{2})\pmod {2}\implies a^{7}\equiv a\pmod {2}\\
&a^{3}\equiv a\pmod {3}\implies a^{6}\equiv a^{2}\pmod {3}\\
&\implies a^{7}\equiv a^{3}\pmod {3}\implies a^{7}\equiv a\pmod {3}.\\
\end{align*}
Since ## 2, 3, 7 ## are relatively prime to each other,
it follows that ## a^{7}\equiv a\pmod {2\cdot 3\cdot 7}\implies a^{7}\equiv a\pmod {42} ##.
Therefore, ## a^{7}\equiv a\pmod {42} ## for all ## a ##.
 
Right. I would write the congruences in one line, e.g.
##a^3\equiv a \pmod{3}\Longrightarrow a^7\equiv a^3\cdot a^3 \cdot a\equiv a\cdot a \cdot a \equiv a^3\equiv a\pmod{3}.##
 
Last edited:
  • Like
Likes Math100
fresh_42 said:
Right. I would write the congruences in one line, e.g.
##a^3\equiv a \pmod{3}\Longrightarrow a^7\equiv a^3\cdot a^3 \cdot a\equiv a\cdot a \cdot a \equiv a^3\equiv a\pmod{3}.##
This is way better.
 
Last edited by a moderator:
Back
Top