Derive ## a^{7}\equiv a\pmod {42} ## for all ## a ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Derive
Click For Summary
SUMMARY

The discussion focuses on proving that ## a^{7}\equiv a\pmod {42} ## for all integers ## a ## using Fermat's theorem. The proof demonstrates that since ## 42=2\cdot 3\cdot 7 ##, applying Fermat's theorem yields ## a^{2}\equiv a\pmod {2} ##, ## a^{3}\equiv a\pmod {3} ##, and ## a^{7}\equiv a\pmod {7} ##. By establishing these congruences and utilizing the property of relative primality among the moduli, the conclusion follows that ## a^{7}\equiv a\pmod {42} ##. The discussion also emphasizes the importance of using the general version of Fermat's theorem.

PREREQUISITES
  • Understanding of modular arithmetic
  • Fermat's Little Theorem
  • Basic number theory concepts, particularly prime factorization
  • Knowledge of congruences and their properties
NEXT STEPS
  • Study the general version of Fermat's theorem and its applications
  • Explore advanced topics in modular arithmetic
  • Learn about the Chinese Remainder Theorem
  • Investigate properties of congruences in number theory
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in modular arithmetic and its applications in proofs.

Math100
Messages
817
Reaction score
230
Homework Statement
Derive the following congruence:
## a^{7}\equiv a\pmod {42} ## for all ## a ##.
Relevant Equations
None.
Proof:

Observe that ## 42=6\cdot 7=2\cdot 3\cdot 7 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
Thus
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{6}\equiv 1\pmod {2}\implies a^{7}\equiv a\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{6}\equiv 1\pmod {3}\implies a^{7}\equiv a\pmod {3}\\
&a^{6}\equiv 1\pmod {7}\implies a^{7}\equiv a\pmod {7}.\\
\end{align*}
Therefore, ## a^{7}\equiv a\pmod {42} ## for all ## a ##.
 
Physics news on Phys.org
Fermat's theorem doesn't apply to all ##a##.
 
Then what should we apply here without the Fermat's theorem?
 
Math100 said:
Then what should we apply here without the Fermat's theorem?
You have used Fermat's theorem in the version ##\operatorname{gcd}(a,p)=1.##
The general version says ##a^p\equiv a\pmod{p}.## Try that one.
 
Proof:

Observe that ## 42=6\cdot 7=2\cdot 3\cdot 7 ##.
Applying the Fermat's theorem produces:
## a^{2}\equiv a\pmod {2}, a^{3}\equiv a\pmod {3} ## and ## a^{7}\equiv a\pmod {7} ##.
Thus
\begin{align*}
&a^{2}\equiv a\pmod {2}\implies a^{6}\equiv a^{3}\pmod {2}\\
&\implies a^{7}\equiv a^{4}\pmod {2}\implies a^{7}\equiv (a^{2}\cdot a^{2})\pmod {2}\implies a^{7}\equiv a\pmod {2}\\
&a^{3}\equiv a\pmod {3}\implies a^{6}\equiv a^{2}\pmod {3}\\
&\implies a^{7}\equiv a^{3}\pmod {3}\implies a^{7}\equiv a\pmod {3}.\\
\end{align*}
Since ## 2, 3, 7 ## are relatively prime to each other,
it follows that ## a^{7}\equiv a\pmod {2\cdot 3\cdot 7}\implies a^{7}\equiv a\pmod {42} ##.
Therefore, ## a^{7}\equiv a\pmod {42} ## for all ## a ##.
 
Right. I would write the congruences in one line, e.g.
##a^3\equiv a \pmod{3}\Longrightarrow a^7\equiv a^3\cdot a^3 \cdot a\equiv a\cdot a \cdot a \equiv a^3\equiv a\pmod{3}.##
 
Last edited:
  • Like
Likes   Reactions: Math100
fresh_42 said:
Right. I would write the congruences in one line, e.g.
##a^3\equiv a \pmod{3}\Longrightarrow a^7\equiv a^3\cdot a^3 \cdot a\equiv a\cdot a \cdot a \equiv a^3\equiv a\pmod{3}.##
This is way better.
 
Last edited by a moderator:

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
3K