MHB Determine all pairs of integers

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all pairs of integers $(a, b)$ satisfying the equation $b(a+b)=a^3-7a^2+11a-3$.
 
Mathematics news on Phys.org
This is not a solution. (Emo)

[sp]The pairs $(a,b) = (1,-2),\ (1,1),\ (2,-1),\ (6,-9),\ (6,3)$ are solutions. I believe that these five are the only solutions but I do not see how to prove that.[/sp]
 
(Emo) I believe anemone used some ineq here too, but that thing there seems suspiciously like an elliptic curve.
 
mathbalarka said:
(Emo) I believe anemone used some ineq here too, but that thing there seems suspiciously like an elliptic curve.
I can reduce the problem to finding solutions to the cubic diophantine equation $y^2 = x^3 - 67x - 66$. There are (at least) three solutions $x = -5, -1, 15$, but that's as far as I can go.
 
Opalg said:
This is not a solution. (Emo)

[sp]The pairs $(a,b) = (1,-2),\ (1,1),\ (2,-1),\ (6,-9),\ (6,3)$ are solutions. I believe that these five are the only solutions but I do not see how to prove that.[/sp]
Hello.

Yes, I have come to the same conclusion: brute force

Restrictions:

1ª) a \ge{0}

2ª) If \ b=even \rightarrow{}4 \cancel{|}b

3ª) a \le {|b+3|}

4ª) b=\dfrac{-a \pm {} \sqrt{4a^3-27a^2+44a-12}}{2}

5ª) 4a^3-27a^2+44a-12=T^2

Pero, en fin: la fuerza bruta, referida.(Rofl)

(1,1), (1,-2), (2,-1), (6,3), (6, 9)

I do not know if there is more

Regards.
 
I want to apologize because I only respond to this thread days after. I am sorry...:o

I didn't solve this problem, in fact, I spent days to solve it but ended up with all futile attempts. Having said so, I do have a solution that is suggested by other in another math forum which I want to share it here:

We're asked to determine all pairs of integers $(a, b)$ satisfying the equation $b(a+b)=a^3-7a^2+11a-3$.

If we rewrite the equation, we get

$4b(a+b)=4(a^3-7a^2+11a-3)$

$4ab+4b^2=4a^3-28a^2+44a-12$

$4ab+4b^2+a^2=4a^3-27a^2+44a-12$

$(2b+a)^2=(a-2)(4a^2-19a+6)$

$(2b+a)^2=(a-2)(4(a-2)^2-3(a-2)-16)$

Let $x=a-2$ we then have

$(2b+a)^2=x(4x^2-3x-16)=x(x(4x-3)-16)$

We can tell that $x(4x^2-3x-16)$ is a perfect square, and hence

$x(4x^2-3x-16) \ge 0$

This gives us the solution sets of $-1\le x \le 0$ and $x \ge 3$.

For $-1\le x \le 0$:

$x=-1$ gives $a=1$, and $(2b+1)^2=9$ and $\therefore b=-2,1$.

$x=0$ gives $a=2$, and $(2b+2)^2=0$ and $\therefore b=-1$.

For $x \ge 3$, $gcd(x, x(x(4x-3)-16))|16$ and hence $(x, x(x(4x-3)-16))|16$.

For this case, we have

$x=4$ gives $a=6$, and $(2b+6)^2=144$ and $\therefore b=-9,3$.

and we're done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top