MHB Determine the position using an iteration method

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Method Position
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The function \begin{equation*}f(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}\end{equation*} has at exactly one position $\overline{x}>1$ the same value as at the position $x=1$. Determine the position $\overline{x}$ using an iteration method with accuracy of two decimal digits. I have done the following:

We have that \begin{equation*}f(\overline{x})=f(1)\Rightarrow f(\overline{x})-f(1)=0 \Rightarrow g(x):=f(x)-f(1)\end{equation*}

First we have to calculate $f(1)$:
\begin{align*}f(1)&=\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}=\frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\sin \left (\pi (x-1)\right )}{x-1}\ \overset{DLH}{ = } \ \frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\pi \cos \left (\pi (x-1)\right )}{1}\\ & =\frac{1}{e^{1/9}}\cdot \pi \cos \left (\pi \cdot 0\right )=\frac{1}{e^{1/9}}\cdot \pi =\frac{\pi}{e^{1/9}}\end{align*}

Therefore we get the function \begin{equation*}g(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}-\frac{\pi}{e^{1/9}}\end{equation*}

Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method? (Wondering)

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

The function \begin{equation*}f(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}\end{equation*} has at exactly one position $\overline{x}>1$ the same value as at the position $x=1$. Determine the position $\overline{x}$ using an iteration method with accuracy of two decimal digits. I have done the following:

We have that \begin{equation*}f(\overline{x})=f(1)\Rightarrow f(\overline{x})-f(1)=0 \Rightarrow g(x):=f(x)-f(1)\end{equation*}

First we have to calculate $f(1)$:
\begin{align*}f(1)&=\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}=\frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\sin \left (\pi (x-1)\right )}{x-1}\ \overset{DLH}{ = } \ \frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\pi \cos \left (\pi (x-1)\right )}{1}\\ & =\frac{1}{e^{1/9}}\cdot \pi \cos \left (\pi \cdot 0\right )=\frac{1}{e^{1/9}}\cdot \pi =\frac{\pi}{e^{1/9}}\end{align*}

Therefore we get the function \begin{equation*}g(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}-\frac{\pi}{e^{1/9}}\end{equation*}

Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method? (Wondering)

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$? (Wondering)

[DESMOS=-1,4,-1,4]\frac{\left(x\sin\left(\pi\left(x-1\right)\right)\right)}{e^{x/9}(x-1)}[/DESMOS]
The above graph shows that the function repeats its value at $x=1$ when $x$ is somewhere near $1.4$ or $1.5$. So I would take $x_0=1.5$.
 
Last edited:
mathmari said:
Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method?

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$?

Hey mathmari!

This is an example where Newton-Raphson can have problems if we are not careful.
If we pick a starting value that is too far from the zero, it will likely not converge.
However, a starting value that starts slightly to the right of the zero, such as the 1.5 that Opalg pointed out, should do the job. And it will converge quadratically.
Starting below 1.4 or above 2.1 will likely diverge though. (Wondering)

Alternatively algorithms are bisection and regula falsi.
First we might search for values that are on opposite sides of the x-axis.
That is, we can start with some initial interval, and then either double or half its size until we find both a positive and a negative function value.
The root must then in between those, after which both bisection and regula falsi will find it. (Thinking)
 
We have \begin{align*}&g(x)=\frac{x\sin \left (\pi(x-1)\right )}{e^{x/9}(x-1)}-\frac{\pi}{e^{1/9}}\\ &g'(x)=\frac{\left [\sin \left (\pi (x-1)\right )+x\pi \cos \left (\pi (x-1)\right )\right ]\left (x-1\right )-x\sin \left (\pi (x-1)\right ) \frac{8+x}{9}}{e^{x/9}(x-1)^2}\end{align*}

Choosing as initial value $x_0=1.5$ we get the following:
\begin{align*}x_1=x_0-\frac{g(x_0)}{g'(x_0)}\approx 1.4259 \\ x_2=x_1-\frac{g(x_1)}{g'(x_1)}\approx 1.4149 \\ x_3=x_2-\frac{g(x_2)}{g'(x_2)}\approx 1.4147\end{align*}
The first two decimal digits are the same as in the previous step and so position that we are looking for is $1.41$. Is everything correct? (Wondering)
 
Yep. (Nod)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
11
Views
2K
Replies
4
Views
1K
Replies
5
Views
1K
Replies
1
Views
1K
Back
Top