Determine the position using an iteration method

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Method Position
Click For Summary

Discussion Overview

The discussion revolves around determining the position $\overline{x}$ where the function \( f(x) = \frac{x}{e^{x/9}} \cdot \frac{\sin(\pi(x-1))}{x-1} \) equals its value at \( x=1 \). Participants explore using an iteration method, particularly Newton's method, to find this position with an accuracy of two decimal digits.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using Newton's method to approximate the root of the function \( g(x) = f(x) - f(1) \).
  • Others express concern about the choice of the initial guess, noting that a poor choice could lead to divergence in Newton's method.
  • A participant suggests starting with \( x_0 = 1.5 \) based on graphical observations of the function's behavior near \( x=1 \).
  • Another participant discusses alternative methods such as bisection and regula falsi, emphasizing the need to find values on opposite sides of the x-axis to bracket the root.
  • Calculations are presented showing the iterative steps of Newton's method starting from \( x_0 = 1.5 \), yielding values that converge towards \( 1.41 \).
  • A participant questions the correctness of the iterative results obtained.

Areas of Agreement / Disagreement

Participants generally agree on the use of an iterative method to find the root, but there is no consensus on the best initial guess or method to use, highlighting multiple competing views on the approach.

Contextual Notes

There are limitations regarding the choice of initial values for the iteration methods, as well as the potential for divergence if the starting point is not chosen carefully. The discussion does not resolve these issues definitively.

Who May Find This Useful

This discussion may be useful for individuals interested in numerical methods for root-finding, particularly in the context of mathematical functions and iterative algorithms.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The function \begin{equation*}f(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}\end{equation*} has at exactly one position $\overline{x}>1$ the same value as at the position $x=1$. Determine the position $\overline{x}$ using an iteration method with accuracy of two decimal digits. I have done the following:

We have that \begin{equation*}f(\overline{x})=f(1)\Rightarrow f(\overline{x})-f(1)=0 \Rightarrow g(x):=f(x)-f(1)\end{equation*}

First we have to calculate $f(1)$:
\begin{align*}f(1)&=\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}=\frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\sin \left (\pi (x-1)\right )}{x-1}\ \overset{DLH}{ = } \ \frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\pi \cos \left (\pi (x-1)\right )}{1}\\ & =\frac{1}{e^{1/9}}\cdot \pi \cos \left (\pi \cdot 0\right )=\frac{1}{e^{1/9}}\cdot \pi =\frac{\pi}{e^{1/9}}\end{align*}

Therefore we get the function \begin{equation*}g(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}-\frac{\pi}{e^{1/9}}\end{equation*}

Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method? (Wondering)

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

The function \begin{equation*}f(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}\end{equation*} has at exactly one position $\overline{x}>1$ the same value as at the position $x=1$. Determine the position $\overline{x}$ using an iteration method with accuracy of two decimal digits. I have done the following:

We have that \begin{equation*}f(\overline{x})=f(1)\Rightarrow f(\overline{x})-f(1)=0 \Rightarrow g(x):=f(x)-f(1)\end{equation*}

First we have to calculate $f(1)$:
\begin{align*}f(1)&=\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}=\frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\sin \left (\pi (x-1)\right )}{x-1}\ \overset{DLH}{ = } \ \frac{1}{e^{1/9}}\cdot \lim_{x\rightarrow 1}\frac{\pi \cos \left (\pi (x-1)\right )}{1}\\ & =\frac{1}{e^{1/9}}\cdot \pi \cos \left (\pi \cdot 0\right )=\frac{1}{e^{1/9}}\cdot \pi =\frac{\pi}{e^{1/9}}\end{align*}

Therefore we get the function \begin{equation*}g(x)=\frac{x}{e^{x/9}}\cdot \frac{\sin \left (\pi (x-1)\right )}{x-1}-\frac{\pi}{e^{1/9}}\end{equation*}

Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method? (Wondering)

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$? (Wondering)

[DESMOS=-1,4,-1,4]\frac{\left(x\sin\left(\pi\left(x-1\right)\right)\right)}{e^{x/9}(x-1)}[/DESMOS]
The above graph shows that the function repeats its value at $x=1$ when $x$ is somewhere near $1.4$ or $1.5$. So I would take $x_0=1.5$.
 
Last edited:
mathmari said:
Now we have to apply an iteration method to approximate the root of that function, right? Do we use the Newton's method?

We don't have an interval to which the root will belong, we only know that it is greater than $1$. So do we have to guess such an interval to calculate the first input $x_0$?

Hey mathmari!

This is an example where Newton-Raphson can have problems if we are not careful.
If we pick a starting value that is too far from the zero, it will likely not converge.
However, a starting value that starts slightly to the right of the zero, such as the 1.5 that Opalg pointed out, should do the job. And it will converge quadratically.
Starting below 1.4 or above 2.1 will likely diverge though. (Wondering)

Alternatively algorithms are bisection and regula falsi.
First we might search for values that are on opposite sides of the x-axis.
That is, we can start with some initial interval, and then either double or half its size until we find both a positive and a negative function value.
The root must then in between those, after which both bisection and regula falsi will find it. (Thinking)
 
We have \begin{align*}&g(x)=\frac{x\sin \left (\pi(x-1)\right )}{e^{x/9}(x-1)}-\frac{\pi}{e^{1/9}}\\ &g'(x)=\frac{\left [\sin \left (\pi (x-1)\right )+x\pi \cos \left (\pi (x-1)\right )\right ]\left (x-1\right )-x\sin \left (\pi (x-1)\right ) \frac{8+x}{9}}{e^{x/9}(x-1)^2}\end{align*}

Choosing as initial value $x_0=1.5$ we get the following:
\begin{align*}x_1=x_0-\frac{g(x_0)}{g'(x_0)}\approx 1.4259 \\ x_2=x_1-\frac{g(x_1)}{g'(x_1)}\approx 1.4149 \\ x_3=x_2-\frac{g(x_2)}{g'(x_2)}\approx 1.4147\end{align*}
The first two decimal digits are the same as in the previous step and so position that we are looking for is $1.41$. Is everything correct? (Wondering)
 
Yep. (Nod)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 3 ·
Replies
3
Views
3K