Determine whether each of the ISBNs below is correct

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

This discussion analyzes the validity of three ISBNs using the checksum formula for ISBN-10, which states that the check digit (a10) must equal the sum of the products of the first nine digits (ak) multiplied by their respective weights (k) modulo 11. The ISBN 0-07-232569-0 from the United States is confirmed as correct, while 91-7643-497-5 from Sweden is incorrect. The ISBN 1-56947-303-10 from England is also confirmed as correct. The calculations demonstrate the application of the ISBN checksum formula effectively.

PREREQUISITES
  • Understanding of ISBN-10 checksum calculation
  • Familiarity with modular arithmetic
  • Basic knowledge of mathematical summation notation
  • Ability to perform weighted sums
NEXT STEPS
  • Research the differences between ISBN-10 and ISBN-13 formats
  • Learn about the implementation of ISBN validation algorithms in programming languages
  • Explore the history and evolution of ISBN standards
  • Study the implications of incorrect ISBNs in publishing and libraries
USEFUL FOR

Publishers, librarians, data entry professionals, and anyone involved in book cataloging and validation processes will benefit from this discussion.

Math100
Messages
817
Reaction score
229
Homework Statement
The International Standard Book Number (ISBN) used in many libraries consists of nine digits ## a_{1}a_{2}...a_{9} ## followed by a tenth check digit ## a_{10} ##, which satisfies
## a_{10}\equiv \sum^{9}_{k=1} ka_{k}\pmod {11} ##.
Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
Relevant Equations
None.
(a)
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.

(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.

(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: The International Standard Book Number (ISBN) used in many libraries consists of nine digits ## a_{1}a_{2}...a_{9} ## followed by a tenth check digit ## a_{10} ##, which satisfies
## a_{10}\equiv \sum^{9}_{k=1} ka_{k}\pmod {11} ##.
Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
Relevant Equations:: None.

(a)
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.

(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.

(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.
I got the same result. But that only reduces the chances. We still could have made both the same error, at least modulo 11. :cool:
 
  • Haha
Likes berkeman
fresh_42 said:
I got the same result. But that only reduces the chances. We still could have made both the same error, at least modulo 11. :cool:
What's the error then?
 
Math100 said:
What's the error then?
That was a joke. I don't think you made one. However, I checked the calculations only in mind.

The first book I checked here, however, has a ten-digit number plus a check digit.
 
  • Like
Likes Math100
Let's test ##3-411-014420-2.##

##3+4\cdot 2+ 3+4+6+4\cdot 7+4\cdot 8+2\cdot 9 \equiv 3 \not\equiv 2\pmod{11}.## Hmm ...
 
  • Like
Likes Math100
fresh_42 said:
Let's test ##3-411-014420-2.##

##3+4\cdot 2+ 3+4+6+4\cdot 7+4\cdot 8+2\cdot 9 \equiv 3 \not\equiv 2\pmod{11}.## Hmm ...
I know, it's a bit weird.
 
They say a new 13 digits code has been applied since 2007.
 
anuttarasammyak said:
They say a new 13 digits code has been applied since 2007.
My book example is older.
 
  • Like
Likes anuttarasammyak

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K