Determine whether each of the ISBNs below is correct

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around verifying the correctness of various International Standard Book Numbers (ISBNs) using a specific mathematical check involving modular arithmetic. The subject area includes number theory and modular arithmetic as applied to ISBN validation.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants present calculations for different ISBNs, checking the validity of each by applying the ISBN check digit formula. Some participants express uncertainty about potential errors in their calculations or reasoning.

Discussion Status

The discussion includes multiple ISBNs being analyzed, with some participants confirming their results while others express doubts about the calculations. There is an ongoing exploration of potential errors and the implications of different ISBN formats, including a mention of a new 13-digit code introduced since 2007.

Contextual Notes

Participants note that the ISBNs being discussed may vary in format, with some being older examples that do not conform to the newer 13-digit standard. There is also mention of the possibility of shared errors in calculations among participants.

Math100
Messages
823
Reaction score
234
Homework Statement
The International Standard Book Number (ISBN) used in many libraries consists of nine digits ## a_{1}a_{2}...a_{9} ## followed by a tenth check digit ## a_{10} ##, which satisfies
## a_{10}\equiv \sum^{9}_{k=1} ka_{k}\pmod {11} ##.
Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
Relevant Equations
None.
(a)
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.

(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.

(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: The International Standard Book Number (ISBN) used in many libraries consists of nine digits ## a_{1}a_{2}...a_{9} ## followed by a tenth check digit ## a_{10} ##, which satisfies
## a_{10}\equiv \sum^{9}_{k=1} ka_{k}\pmod {11} ##.
Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
Relevant Equations:: None.

(a)
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.

(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.

(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.
I got the same result. But that only reduces the chances. We still could have made both the same error, at least modulo 11. :cool:
 
  • Haha
Likes   Reactions: berkeman
fresh_42 said:
I got the same result. But that only reduces the chances. We still could have made both the same error, at least modulo 11. :cool:
What's the error then?
 
Math100 said:
What's the error then?
That was a joke. I don't think you made one. However, I checked the calculations only in mind.

The first book I checked here, however, has a ten-digit number plus a check digit.
 
  • Like
Likes   Reactions: Math100
Let's test ##3-411-014420-2.##

##3+4\cdot 2+ 3+4+6+4\cdot 7+4\cdot 8+2\cdot 9 \equiv 3 \not\equiv 2\pmod{11}.## Hmm ...
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Let's test ##3-411-014420-2.##

##3+4\cdot 2+ 3+4+6+4\cdot 7+4\cdot 8+2\cdot 9 \equiv 3 \not\equiv 2\pmod{11}.## Hmm ...
I know, it's a bit weird.
 
They say a new 13 digits code has been applied since 2007.
 
anuttarasammyak said:
They say a new 13 digits code has been applied since 2007.
My book example is older.
 
  • Like
Likes   Reactions: anuttarasammyak

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K