Determine (with proof) the set of all prime numbers

Click For Summary
SUMMARY

The set of all prime numbers that can divide two successive integers of the form n^2 + 3 is conclusively identified as {13}. The proof demonstrates that if p is a prime divisor of both n^2 + 3 and (n+1)^2 + 3, then p must also divide (2n + 1) and subsequently leads to the conclusion that p divides (n - 6). The only viable prime that satisfies these conditions is 13.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Familiarity with basic algebraic manipulation
  • Knowledge of the Euclidean Algorithm
  • Ability to work with modular arithmetic
NEXT STEPS
  • Study the properties of prime numbers in number theory
  • Learn about the Euclidean Algorithm and its applications
  • Explore modular arithmetic and its relevance in proofs
  • Investigate other forms of integers and their divisibility properties
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of prime numbers and their applications in proofs.

Math100
Messages
817
Reaction score
230
Homework Statement
Determine (with proof) the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ##.
Relevant Equations
None.
Proof:

Let ## p ## be the prime divisor of two successive integers ## n^{2}+3 ## and ## (n+1)^{2}+3 ##.
Then ## p\mid [(n+1)^{2}+3-(n^{2}+3)]\implies p\mid (2n+1) ##.
Observe that ## p\mid (n^{2}+3) ## and ## p\mid (2n+1) ##.
Now we see that ## p\mid [(n^{2}+3)-3(2n+1)]\implies p\mid (n^{2}-6n)\implies p\mid [n(n-6)] ##.
Since ## p\nmid n ##, it follows that ## p\mid (n-6) ##.
By Euclidean Algorithm, we have that ## p\mid (2n+1)\implies p\mid [2(n-6)+13] ##.
Therefore, the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ## is ## {13} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Determine (with proof) the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ##.
Relevant Equations:: None.

Proof:

Let ## p ## be the prime divisor of two successive integers ## n^{2}+3 ## and ## (n+1)^{2}+3 ##.
Then ## p\mid [(n+1)^{2}+3-(n^{2}+3)]\implies p\mid (2n+1) ##.
Observe that ## p\mid (n^{2}+3) ## and ## p\mid (2n+1) ##.
Now we see that ## p\mid [(n^{2}+3)-3(2n+1)]\implies p\mid (n^{2}-6n)\implies p\mid [n(n-6)] ##.
Since ## p\nmid n ##, it follows that ## p\mid (n-6) ##.
Why is ##p\mid n## impossible? If ##p|n## then ##p|((n^2+3) -n\cdot n)## and thus ##p=3.## However, if ##3|n## then ##3\nmid (n^2+2n+4)=((n+1)^2+3).##

Now, I see that ##p\nmid n.##
Math100 said:
By Euclidean Algorithm, we have that ## p\mid (2n+1)\implies p\mid [2(n-6)+13] ##.
Wait again. We know ##p|(2n+1)## and ##p|(n-6)##. So ##p|((2n+1)-2\cdot (n-6))=13,## i.e. ##p=13.##
Math100 said:
Therefore, the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ## is ## {13} ##.
Yes, that is right.

It wasn't asked for, but is there an example of such an ##n##?
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Why is ##p\mid n## impossible? If ##p|n## then ##p|((n^2+3) -n\cdot n)## and thus ##p=3.## However, if ##3|n## then ##3\nmid (n^2+2n+4)=((n+1)^2+3).##

Now, I see that ##p\nmid n.##

Wait again. We know ##p|(2n+1)## and ##p|(n-6)##. So ##p|((2n+1)-2\cdot (n-6))=13,## i.e. ##p=13.##

Yes, that is right.

It wasn't asked for, but is there an example of such an ##n##?
Should I include/add why ## p\nmid n ## in this proof just like how you did it above? And an example of such an ## n ## is ## 6 ##.
 
  • Like
Likes   Reactions: fresh_42
Math100 said:
Should I include/add why ## p\nmid n ## in this proof just like how you did it above? And an example of such an ## n ## is ## 6 ##.
I'd say yes because it is (at least to me) not obvious. You could as well start with the exclusion of ##p=3## in which case ##p\nmid n## becomes obvious from ##p|(n^2+3).##

Here are some more ...

1​
4​
0,3076923077​
2​
7​
0,5384615385​
3​
12​
0,9230769231​
4​
19​
1,4615384615​
5​
28​
2,1538461538​
6​
39​
3​
7​
52​
4​
8​
67​
5,1538461538​
9​
84​
6,4615384615​
10​
103​
7,9230769231​
11​
124​
9,5384615385​
12​
147​
11,3076923077​
13​
172​
13,2307692308​
14​
199​
15,3076923077​
15​
228​
17,5384615385​
16​
259​
19,9230769231​
17​
292​
22,4615384615​
18​
327​
25,1538461538​
19​
364​
28​
20​
403​
31​
21​
444​
34,1538461538​
22​
487​
37,4615384615​
23​
532​
40,9230769231​
24​
579​
44,5384615385​
25​
628​
48,3076923077​
26​
679​
52,2307692308​
27​
732​
56,3076923077​
28​
787​
60,5384615385​
29​
844​
64,9230769231​
30​
903​
69,4615384615​
31​
964​
74,1538461538​
32​
1027​
79​
33​
1092​
84​
34​
1159​
89,1538461538​
35​
1228​
94,4615384615​
36​
1299​
99,9230769231​
37​
1372​
105,5384615385​
38​
1447​
111,3076923077​
39​
1524​
117,2307692308​
40​
1603​
123,3076923077​
41​
1684​
129,5384615385​
42​
1767​
135,9230769231​
43​
1852​
142,4615384615​
44​
1939​
149,1538461538​
45​
2028​
156​
46​
2119​
163​
47​
2212​
170,1538461538​
48​
2307​
177,4615384615​
49​
2404​
184,9230769231​
50​
2503​
192,5384615385​
 
  • Wow
Likes   Reactions: Math100

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
4
Views
3K
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K