MHB Did You Solve the Differential Equation Correctly?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
850
$$\displaystyle y^\prime +2y =xe^{-2x}, \quad y(1)=0$$
$$u(x)=exp\int2 \, dx = e^{2x} $$
 
Last edited:
Physics news on Phys.org
karush said:
$$\displaystyle y^\prime +2y =xe^{-2x}, \quad y(1)=0$$
$$u(x)=exp\int2 \, dx = e^{2x} $$
What is the question?
 
karush said:
is that correct

if so ill proceed

Your integrating factor is correct, but I would use the notation:

$$\mu(x)=\exp\left(2\int \,dx\right)=e^{2x}$$
 
$$\displaystyle y^\prime +2y =xe^{-2x}, \quad y(1)=0$$
$$u(x)=exp\int2 \, dx = e^{2x} $$

$$\displaystyle y^\prime +2y =xe^{-2x}, \quad y(1)=0$$
obtain u(x)
$$u(x)=exp\int2 \, dx = e^{2x} $$
distribute
$$e^{2x} y'+e^{2x} 2y=e^{2x} xe^{2x}$$
simplify
$$\frac{dy}{dx}(e^{2x} (2y))= 4xe^x $$not sure

- - - Updated - - -

MarkFL said:
Your integrating factor is correct, but I would use the notation:

$$\mu(x)=\exp\left(2\int \,dx\right)=e^{2x}$$
ok

i kinda took some more steps but ...
 
I think what you mean is:

$$\frac{d}{dx}\left(e^{2x}(2y)\right)$$

Please perform the indicated differentiation (product rule), and see if you get back to the previous step. :)
 
$$\displaystyle y^\prime +2y =xe^{-2x}, \quad y(1)=0$$
obtain u(x)
$$u(x)=exp\int2 \, dx = e^{2x} $$
distribute
$$e^{2x} y'+e^{2x} 2y=e^{2x} xe^{-2x}=x$$
simplify
$$ye^{(-2x)}=\int x dx = \frac{x^2}{2}+c$$
divide
$$y=\frac{x^2 e^{2x}}{2}+ce^{2x}$$
then
$$y(1)=\frac{e^{2}}{2}+ce^2=0 \therefore c=-\frac{1}{2}$$
finally
$$y=\frac{1}{2}(x^2-1)e^2$$

so any oops stuff
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top