MHB Differential equations - Decidability and Complexity

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Is someone familiar with the following?

We have linear differential equations with polynomial coefficients depending on x.

$a_n(x)y^{(n)}+ \dots a_1(x)y^{(1)}+a_0(x)y^{(0)}=b(x)$

There are problems like if there are solutions, if the solutions are linear independent and so on and we are looking for the decidability and the complexity.
 
Physics news on Phys.org
Hi,

I'm not too much familiar with this questions, but ... don't you need an algorithm to talk about the complexity? Or are you asking about the existence of a polynomial time algorithm?
 
First of all, I am asking if someone is familiar with the decidability of such problems.

Are you familiar with that?
 
One such problem is the following:

View attachment 4527

Do you maybe know where I can get more information?
 

Attachments

  • diff.PNG
    diff.PNG
    36.9 KB · Views: 101
Is this related to the 10th problem of Hilbert?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top