MHB Digit sum rule for the divisibility by 9

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Divisibility Sum
AI Thread Summary
The discussion focuses on proving the congruence relation \( a(m+1)^n \equiv a \mod 9 \) for natural numbers \( n \) and \( m \), and the implications for the digit sum rule regarding divisibility by 9. The initial proof attempt is questioned, particularly with an example showing that the relation does not hold for certain values of \( a \), \( m \), and \( n \). A participant suggests that the proof may need clarification or correction, particularly regarding the choice of \( m \) and its relation to divisibility. The connection to the digit sum rule is established, indicating that the sum of the digits of a number is congruent to the number itself modulo 9. The conversation emphasizes the importance of ensuring the correctness of the initial congruence statement.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $n\in \mathbb{N}$, $2\leq m\in \mathbb{N}$ and $a\in \mathbb{Z}$.

I want to show that $a\left (m+1\right )^n \overset{(9)}{\equiv} a$.

I have done the following:
\begin{equation*}a\left (m+1\right )^n \overset{(9)}{\equiv} a\left (0+1\right )^n \overset{(9)}{\equiv} a\cdot 1^n \overset{(9)}{\equiv} a\end{equation*}

Is this correct? Or do we need more details at each step? (Wondering)

After that, using the above, I want to show that \begin{equation*}\forall a_0, a_1, \ldots ,a_k\in \mathbb{Z} : \ \sum_{i=0}^ka_i10^i\overset{(9)}{\equiv}\sum_{i=0}^ka_i\end{equation*} Considering the previous result for the case $m=9$ we get:
$a(9+1)^n\overset{(9)}{\equiv}a \Rightarrow a\cdot 10^n\overset{(9)}{\equiv}a$ for $n\in \mathbb{N}$.

Let $a_0, a_1, \ldots ,a_k\in \mathbb{Z}$.

It holds the following:
\begin{equation*}\sum_{i=0}^ka_i10^i\overset{(9)}{\equiv}\sum_{i=0}^ka_i\end{equation*}
Right? (Wondering) Then how can we get from this result the digit sum rule for the divisibility of a natural number by $9$, if we consider the case $0\leq a_0, a_1, \ldots , a_k<10$ ? Could you give me a hint? (Wondering)
 
Mathematics news on Phys.org
Your last step is correct because every a_i is less than 10 and 10= 9+ 1. So a_i(10)= a_i(9+ 1)= a_i modulo 9. The answer to your last question follows immediately from that equation: since \sum a_i 10^i= \sum a_i, modulo 9, the left side is evenly divisible by 9 if and only if the right side is: if and only if the sum of digits is a multiple of 9.
 
mathmari said:
Hey! :o

Let $n\in \mathbb{N}$, $2\leq m\in \mathbb{N}$ and $a\in \mathbb{Z}$.

I want to show that $a\left (m+1\right )^n \overset{(9)}{\equiv} a$.

I have done the following:
\begin{equation*}a\left (m+1\right )^n \overset{(9)}{\equiv} a\left (0+1\right )^n \overset{(9)}{\equiv} a\cdot 1^n \overset{(9)}{\equiv} a\end{equation*}

Is this correct? Or do we need more details at each step?

Hey mathmari!

It doesn't look correct to me. (Worried)

Suppose we pick $a=3,\,m=2,\,n=1$, then we would get $3(2+1)^1=9\overset{(9)}{\equiv} 3$, but this is not true is it?

Did you perhaps mean divisibility by $m$? (Wondering)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
2K
Replies
15
Views
2K
Replies
1
Views
1K
Replies
14
Views
2K
Replies
4
Views
1K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Back
Top