I Discrete mathematics--An easy doubt on the notations of sums

V9999
Messages
17
Reaction score
3
TL;DR Summary
Here, I present a silly question about the notation of sums.
I have a doubt about the notation and alternative ways to represent the terms involved in sums.

Suppose that we have the following multivariable function,

$$f(x,y)=\sum^{m}_{j=0}y^{j}\sum^{j-m}_{i=0}x^{i+j}$$.

Now, let ##\psi_{j}(x)=\sum^{j-m}_{i=0}x^{i+j}##. In the light of the foregoing, is it correct to express ##f(x,y)## as follows

$$f(x,y)=\sum^{m}_{j=0}y^{j}\psi_{j}(x)$$ ?

Thanks in advance!
 
Physics news on Phys.org
V9999 said:
TL;DR Summary: Here, I present a silly question about the notation of sums.

I have a doubt about the notation and alternative ways to represent the terms involved in sums.

Suppose that we have the following multivariable function,

$$f(x,y)=\sum^{m}_{j=0}y^{j}\sum^{j-m}_{i=0}x^{i+j}$$.

Now, let ##\psi_{j}(x)=\sum^{j-m}_{i=0}x^{i+j}##. In the light of the foregoing, is it correct to express ##f(x,y)## as follows

$$f(x,y)=\sum^{m}_{j=0}y^{j}\psi_{j}(x)$$ ?

Thanks in advance!
Yes.

I think - not sure, look it up - with Einstein's summation convention you can even write ##f(x,y)=y^j\psi_j(x).##
 
V9999 said:
Now, let ##\psi_{j}(x)=\sum^{j-m}_{i=0}x^{i+j}##. In the light of the foregoing, is it correct to express ##f(x,y)## as follows

$$f(x,y)=\sum^{m}_{j=0}y^{j}\psi_{j}(x)$$ ?
Yes, but you might want to be specific in your definition of ##\psi_j## about the legitimate values of ##j##. In the original summation, the legitimate values of ##j## are known.
 
V9999 said:
TL;DR Summary: Here, I present a silly question about the notation of sums.

I have a doubt about the notation and alternative ways to represent the terms involved in sums.

Suppose that we have the following multivariable function,

$$f(x,y)=\sum^{m}_{j=0}y^{j}\sum^{j-m}_{i=0}x^{i+j}$$.

Now, let ##\psi_{j}(x)=\sum^{j-m}_{i=0}x^{i+j}##. In the light of the foregoing, is it correct to express ##f(x,y)## as follows

$$f(x,y)=\sum^{m}_{j=0}y^{j}\psi_{j}(x)$$ ?

Thanks in advance!
##j-m\le 0##. Inner sum is strange.
 
  • Like
Likes V9999 and FactChecker
I would rather write that as ##\psi_{j,m}(x)## to avoid any ambiguity. Also what mathman said...
 
  • Like
Likes DrClaude and V9999
fresh_42 said:
Yes.

I think - not sure, look it up - with Einstein's summation convention you can even write ##f(x,y)=y^j\psi_j(x).##
Hi, fresh_42. I hope you are doing well. Thank you very and very much for your comments.
 
FactChecker said:
Yes, but you might want to be specific in your definition of ##\psi_j## about the legitimate values of ##j##. In the original summation, the legitimate values of ##j## are known.
Hi, FactChecker. I hope you are doing well. Thanks for the great insight and I will take it under consideration.
 
Office_Shredder said:
I would rather write that as ##\psi_{j,m}(x)## to avoid any ambiguity. Also what mathman said...

Hi, Office_Shredder. I hope you are doing well. Thanks for the great insight and I will take it under consideration.
 
Back
Top