mathsss2
- 38
- 0
For each n \in \omega, let X_n be the set \{0, 1\}, and let \tau_n be the discrete topology on X_n. For each of the following subsets of \prod_{n \in \omega} X_n, say whether it is open or closed (or neither or both) in the product topology.
(a) \{f \in \prod_{n \in \omega} X_n | f(10) = 0 \}
(b) \{f \in \prod_{n \in \omega} X_n | \text{ }\exists n \in \omega \text{ }f(n) = 0 \}
(c) \{f \in \prod_{n \in \omega} X_n | \text{ }\forall n \in \omega \text{ }f(n) = 0 \Rightarrow f(n + 1) = 1 \}
(d) \{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n) = 0 \}| = 5 \}
(e)\{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n) = 0 \}|\leq5 \}
(a) \{f \in \prod_{n \in \omega} X_n | f(10) = 0 \}
(b) \{f \in \prod_{n \in \omega} X_n | \text{ }\exists n \in \omega \text{ }f(n) = 0 \}
(c) \{f \in \prod_{n \in \omega} X_n | \text{ }\forall n \in \omega \text{ }f(n) = 0 \Rightarrow f(n + 1) = 1 \}
(d) \{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n) = 0 \}| = 5 \}
(e)\{f \in \prod_{n \in \omega} X_n | \text{ }|\{ n \in \omega | f(n) = 0 \}|\leq5 \}