I Displacement operation acting on individual quadrature components

waadles
Messages
1
Reaction score
0
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?

If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$

This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.

I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$

and it remains the same, which is not correct. I would also expect ##\frac{1}{\sqrt{2}} (a - a^\dagger + |\alpha|)##.

Can someone tell me where I am going wrong?

I appreciate any help you can provide.
 
Last edited:
Physics news on Phys.org
Since operator a is not Hermitian, I am not sure and accoustomed to translational operation on it. Is it an exercise on textbook ?
 
waadles said:
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?
That follows by taking the Hermitian conjugate of the equation.
waadles said:
If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$
Note that ##\alpha + \alpha^* = 2Re(\alpha)##.
waadles said:
This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.
Why did you expect that?
waadles said:
I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$
In this case you should use ##\alpha - \alpha^* = 2iIm(\alpha)##.
 
PeroK said:
In this case you should use α−α∗=2iIm(α).
May we say about meaning of translation of a as
\alpha=\frac{d_x}{\sqrt{2}}-i\frac{d_p}{\sqrt{2}}
where d_x and d_p are displacement in coordinate and momentum space ?
If so it holds for the translated Hamiltoian, i.e.
(a^{\dagger} +\alpha^*)(a+\alpha)+\frac{1}{2}? It seems not obvious to me.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Replies
3
Views
2K
Replies
0
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
0
Views
1K
Replies
6
Views
2K
Back
Top