I Displacement operation acting on individual quadrature components

waadles
Messages
1
Reaction score
0
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?

If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$

This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.

I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$

and it remains the same, which is not correct. I would also expect ##\frac{1}{\sqrt{2}} (a - a^\dagger + |\alpha|)##.

Can someone tell me where I am going wrong?

I appreciate any help you can provide.
 
Last edited:
Physics news on Phys.org
Since operator a is not Hermitian, I am not sure and accoustomed to translational operation on it. Is it an exercise on textbook ?
 
waadles said:
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?
That follows by taking the Hermitian conjugate of the equation.
waadles said:
If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$
Note that ##\alpha + \alpha^* = 2Re(\alpha)##.
waadles said:
This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.
Why did you expect that?
waadles said:
I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$
In this case you should use ##\alpha - \alpha^* = 2iIm(\alpha)##.
 
PeroK said:
In this case you should use α−α∗=2iIm(α).
May we say about meaning of translation of a as
\alpha=\frac{d_x}{\sqrt{2}}-i\frac{d_p}{\sqrt{2}}
where d_x and d_p are displacement in coordinate and momentum space ?
If so it holds for the translated Hamiltoian, i.e.
(a^{\dagger} +\alpha^*)(a+\alpha)+\frac{1}{2}? It seems not obvious to me.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Replies
3
Views
2K
Replies
0
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
0
Views
1K
Replies
6
Views
2K
Back
Top