I Displacement operation acting on individual quadrature components

Click For Summary
The discussion revolves around the operation of displacement operators on quadrature components in quantum mechanics. The user is trying to understand the transformation of the quadrature operator X = (1/√2)(a + a†) under the displacement operator D(α), questioning the results of D(α)†aD(α) and D(α)†a†D(α). They express confusion over the expected outcomes, particularly regarding the addition of terms involving α and its complex conjugate. Additionally, they seek clarification on the transformation of the momentum operator P = (i/√2)(a - a†) and its implications in the context of quantum mechanics. The conversation highlights the complexities of operator manipulation and the nuances of quantum translations.
waadles
Messages
1
Reaction score
0
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?

If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$

This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.

I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$

and it remains the same, which is not correct. I would also expect ##\frac{1}{\sqrt{2}} (a - a^\dagger + |\alpha|)##.

Can someone tell me where I am going wrong?

I appreciate any help you can provide.
 
Last edited:
Physics news on Phys.org
Since operator a is not Hermitian, I am not sure and accoustomed to translational operation on it. Is it an exercise on textbook ?
 
waadles said:
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?
That follows by taking the Hermitian conjugate of the equation.
waadles said:
If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$
Note that ##\alpha + \alpha^* = 2Re(\alpha)##.
waadles said:
This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.
Why did you expect that?
waadles said:
I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$
In this case you should use ##\alpha - \alpha^* = 2iIm(\alpha)##.
 
PeroK said:
In this case you should use α−α∗=2iIm(α).
May we say about meaning of translation of a as
\alpha=\frac{d_x}{\sqrt{2}}-i\frac{d_p}{\sqrt{2}}
where d_x and d_p are displacement in coordinate and momentum space ?
If so it holds for the translated Hamiltoian, i.e.
(a^{\dagger} +\alpha^*)(a+\alpha)+\frac{1}{2}? It seems not obvious to me.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
3
Views
2K
Replies
0
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
0
Views
1K
Replies
6
Views
2K