# Creation and annihilation operator

• A
• Sebas4
Sebas4
TL;DR Summary
Does the annihilation/creation operator on the complex exponent?
Hey, I have a short question.
The quantized field in Schrödinger picture is given by:
$$\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)$$

My question is, does the the annihilation $\hat{a}_{\textbf{p}}$ and creation $\hat{a}^{\dagger}_{\textbf{p}}$ operator act on $e^{i\textbf{p} \cdot \textbf{x}}$ and $e^{-i\textbf{p} \cdot \textbf{x}}$ respectively? In other words: does the annihilation/creation operator on the complex exponent?

Last edited:
Sebas4 said:
does the the annihilation a^p and creation a^p† operator act on eip⋅x and e−ip⋅x respectively?

No.

Paul Colby
Well, it does in the sense that ##a## and ##a^\dagger## commute with these factors.

topsquark
No, they don't. The creation and annihilation operators are linear operators defined in the Fock space. The expeonential functions are numbers; ##\vec{x}, \vec{p} \in \mathbb{R}^3##.

• Quantum Physics
Replies
1
Views
972
• Quantum Physics
Replies
5
Views
2K
Replies
1
Views
284
• Quantum Physics
Replies
24
Views
2K
• Quantum Physics
Replies
12
Views
2K
• High Energy, Nuclear, Particle Physics
Replies
8
Views
1K
• Quantum Physics
Replies
1
Views
883
• Quantum Physics
Replies
4
Views
966
• Quantum Physics
Replies
2
Views
2K
• Quantum Physics
Replies
5
Views
3K