If we simplify the denominator, we see that we have
$\begin{align*}(a+b+c)^3-a^3-b^3-c^3&=3(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+2abc)\\&=3(a+b)(b+c)(c+a)\end{align*}$
In fact, I "cheated" a bit because for the ugly expression such as the one above, noticed that one quick way to factor the expression is by letting $a=-b$, and most likely we would end up with zero after we replacing the $a$ by $-b$ or vice verse into the expression. Similarly, we see that we got the same result if we made the substitution of $b=-c$ and $c=-a$, and et voila, $(a+b)(b+c)(c+a)$ is the factored form of $(a+b+c)^3-a^3-b^3-c^3$.
But bear in mind that our goal is to prove that $(a+b+c)^{333}-a^{333}-b^{333}-c^{333}$ is divisible by $(a+b+c)^3-a^3-b^3-c^3$. Hence, by using the same trick I used above, notice that when
[TABLE="class: grid, width: 800"]
[TR]
[TD="width: 10%"]$a=-b$[/TD]
[TD]$\begin{align*}(a+b+c)^{333}-a^{333}-b^{333}-c^{333}&=(-b+b+c)^{333}+b^{333}-b^{333}-c^{333}\\&=c^{333}-c^{333}\\&=0\end{align*}$[/TD]
[/TR]
[TR]
[TD]$b=-c$[/TD]
[TD]$\begin{align*}(a+b+c)^{333}-a^{333}-b^{333}-c^{333}&=(a-c+c)^{333}-a^{333}+c^{333}-c^{333}\\&=a^{333}-a^{333}\\&=0\end{align*}$[/TD]
[/TR]
[TR]
[TD]$c=-a$[/TD]
[TD]$\begin{align*}(a+b+c)^{333}-a^{333}-b^{333}-c^{333}&=(a+b-a)^{333}-a^{333}-b^{333}+a^{333}\\&=b^{333}-b^{333}\\&=0\end{align*}$[/TD]
[/TR]
[/TABLE]
So we can say at this juncture that $(a+b)(b+c)(c+a)$ are three factors that come from factoring the numerator.
We are not finished yet, we still have to prove that the numerator, their value after the subtraction is divisible by 3. And this can be easily proved by the help of AM-GM formula.
Observe that $a+b+c\ge3\sqrt[3]{abc}\,\,\,\rightarrow(a+b+c)^{333}\ge3^{333}{abc}^{\dfrac{333}{3}}_{\phantom{i}}$ and $a^{333}+b^{333}+c^{333}\ge3(abc)^{\dfrac{333}{3}}_{\phantom{i}}$ (and for both inequalities, equality occurs when $a=b=c=1$) and this gives the minimum value of $(a+b+c)^{333}-a^{333}-b^{333}-c^{333}\ge3^{333}{abc}^{\dfrac{333}{3}}_{\phantom{i}}-3(abc)^{\dfrac{333}{3}}_{\phantom{i}}\ge3{abc}^{\dfrac{333}{3}}_{\phantom{i}}(3^{332}-1)$
and now I think it's safe to conclude that $(a+b+c)^{333}-a^{333}-b^{333}-c^{333}$ is divisible by $(a+b+c)^3-a^3-b^3-c^3$.