Divisibility problem cant use module just induction

Click For Summary
The discussion revolves around proving that 5 divides \(8^n - 3^n\) for natural numbers \(n\) using mathematical induction. The user, William, establishes the base case for \(n = 1\) and seeks guidance on the inductive step for \(n = k + 1\). He successfully manipulates the expression to show that if \(5\) divides \(8^k - 3^k\), then it also divides \(8^{k+1} - 3^{k+1}\) by breaking down the terms and applying the inductive hypothesis. Other users confirm his reasoning and express appreciation for his progress in the proof. The thread concludes with William feeling confident about his solution.
Willy_Will
Messages
15
Reaction score
0
Hi all,

Great forum, I have been reading some cool stuff here for about a month.

Heres my question:
Using induction prove that 5 divides 8^n - 3^n, n Natural Number.

I know its true for n = 1, but I get stuck on the n = k+1. I don't know how to proceed from here: 8(8^k) - 3(3^k)

Also, I KNOW this is very easy using mod 5 but I can't do it here, I HAVE to prove it using only induction.

Any hints?

Thanks,

-William
 
Physics news on Phys.org
If 5 divides X and you show that 5 divides Y-X, does 5 divide Y?
 
I think so, but how can I use that in my problem?
 
The fact that 8= 5+ 3 is very useful here!
 
I think I've got it.

Suppose that 5 divides 8^k - 3^k ---> 8^k - 3^k = 5x, for some integer x.

case n = k +1
= 8^k+1 - 3^k+1
= 8(8^k) - 3(3^k)
= 8(8^k) - (3^k)(8) + (3^k)(8) - (3)(3^k)
= 8(8^k - 3^k) + 3^k(8 - 3)
(1) (2)

(1) by hypotesis 5 divides the expresion.
(2) 5 = 8 - 3, 5 divides 5.

= 8(5x) + 3^k(5)
= 5(8x + 3^k)

5 divides the expresion

Please tell me its that way, if not, point the errors and some hints.

Thanks, really.

-William
 
Last edited:
I think I've got it.

Suppose that 5 divides 8^k - 3^k ---> 8^k - 3^k = 5x, for some integer x.

case n = k +1
= 8^k+1 - 3^k+1
= 8(8^k) - 3(3^k)
= 8(8^k) - (3^k)(8) + (3^k)(8) - (3)(3^k)
= 8(8^k - 3^k) + 3^k(8 - 3)
(1) (2)

(1) by hypotesis 5 divides the expresion.
(2) 5 = 8 - 3, 5 divides 5.

= 8(5x) + 3^k(5)
= 5(8x + 3^k)

5 divides the expresion

Please tell me its that way, if not, point the errors and some hints.

Thanks, really.

-William
 
sorry for the double post.

(1) = (8^k - 3^k)
(2) = (8 - 3)

(1) by hypotesis 5 divides the expresion.
(2) 5 = 8 - 3, 5 divides 5.

= 8(5x) + 3^k(5)
= 5(8x + 3^k)

5 divides the expresion
 
By George, I think he's got it!
 
Thanks guys, I really appreciate it!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
21
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K