Could anybody explain what divisors and the Riemann-Roch theorem are intuitively, motivating them, without any jargon or vagueries (i.e. using actual math), and preferably offering a nice example necessitating this stuff?(adsbygoogle = window.adsbygoogle || []).push({});

I'm sure there is a nice way to explain it in an absolutely natural way, that explains why it applies to classical algebraic curves, differential forms, homology etc... without ever having to use a definition like abelian group, or vector space, i.e. only using definitions Riemann had handy. Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Divisors and Riemann-Roch Intuition

**Physics Forums | Science Articles, Homework Help, Discussion**