DLVO Theory of Colloid Stability

Click For Summary
SUMMARY

DLVO theory describes the potential energy curve of colloid particles, illustrating the balance between attractive van der Waals forces and repulsive electrostatic forces. The theory indicates that colloids are not thermodynamically stable but can be metastable, with the primary minimum representing an aggregated state. The depth of the secondary minimum is influenced by ionic strength, which affects the energy barrier for aggregation. Increased ionic strength leads to a deeper secondary minimum, enhancing the likelihood of flocculation into this state.

PREREQUISITES
  • Understanding of DLVO theory and its implications on colloid stability
  • Knowledge of van der Waals forces and electrostatic interactions
  • Familiarity with ionic strength and its effects on colloidal systems
  • Basic concepts of Brownian motion and kinetic barriers in colloid aggregation
NEXT STEPS
  • Explore the mathematical modeling of potential energy curves in DLVO theory
  • Investigate the effects of ionic strength on colloidal stability and flocculation
  • Learn about the role of electrolytes in modifying colloidal interactions
  • Examine experimental methods for measuring colloid aggregation rates
USEFUL FOR

Researchers in colloid chemistry, materials scientists, and professionals involved in formulations requiring colloidal stability, such as in pharmaceuticals and food science.

Dario56
Messages
289
Reaction score
48
DLVO theory gives the curve of potential energy vs distance of two colloid particles. Potential energy curve is derived for colloids being only electrostatically stabilized and not sterically.

Looking at the image below which shows potential energy curve, we can see two local minima and one maximum. Between local maximum and secondary minimum is a domain of repulsive forces since potential energy increases by making distance between particles smaller.

Theory predicts that if colloid particles have enough energy (usually energy of Brownian motion), they can overcome repulsive forces and bond at primary local minimum which causes flocculation and colloid instability.

If they don't have enough energy colloid should be stable according to this theory, however this doesn't make sense since particles can still bond at secondary minimum. Bonding at secondary minimum forms much weaker bond which can be seen on the curve, but it should still cause particle bonding and flocculation since particles arrive at local minimum.

If this is so, how can this theory predict colloid stability?

DLVO-theory-example-Changing-the-electrical-charge-on-surface-changes-separation.png
 
Engineering news on Phys.org
In standard DLVO theory, colloids are not thermodynamically stable. The primary minimum is the global energy minimum and represents an aggregated state. And in fact, most colloids will separate if left alone for very long periods of time. However, what DLVO predicts is that colloids can be metastable. That is, ##V_{max}## is essentially the kinetic activation barrier to aggregation, and if it is high enough, then particles separated at infinity will not, on average, have enough energy to overcome the activation barrier and aggregate. In fact, you can use ##V_{max}-V(\infty)## as the activation barrier to estimate the rate at which a colloid aggregates.
 
TeethWhitener said:
In standard DLVO theory, colloids are not thermodynamically stable. The primary minimum is the global energy minimum and represents an aggregated state. And in fact, most colloids will separate if left alone for very long periods of time. However, what DLVO predicts is that colloids can be metastable. That is, ##V_{max}## is essentially the kinetic activation barrier to aggregation, and if it is high enough, then particles separated at infinity will not, on average, have enough energy to overcome the activation barrier and aggregate. In fact, you can use ##V_{max}-V(\infty)## as the activation barrier to estimate the rate at which a colloid aggregates.
Thank you for the answer, but it didn't really answer my question because, as I said in the post, particles can bond in secondary minimum if they can't overcome energy barrier which would still lead to flocculation as bonding occurred.
 
The secondary minimum is almost always quite shallow (on the order of kT). Colloid aggregation in the secondary minimum is therefore pretty easily reversible. The depth of the secondary minimum is dependent on ionic strength. At low ionic strength, the main effect of the secondary minimum is to increase the dwell time of particles nearby each other, thereby indirectly increasing the attempt frequency for incoming particles to surmount the barrier to the primary minimum. At higher ionic strengths, flocculation into the secondary minimum becomes more important.

In the OP, there was one question. The answer to the question is that, thermodynamically, DLVO predicts that colloids are not stable. Kinetically, they can be, usually based on the height of the barrier. In very high ionic strength solutions, the secondary minimum will deepen and the colloids will become less stable to flocculation into the secondary minimum. This is a process sometimes called salting out.
 
TeethWhitener said:
The secondary minimum is almost always quite shallow (on the order of kT). Colloid aggregation in the secondary minimum is therefore pretty easily reversible. The depth of the secondary minimum is dependent on ionic strength. At low ionic strength, the main effect of the secondary minimum is to increase the dwell time of particles nearby each other, thereby indirectly increasing the attempt frequency for incoming particles to surmount the barrier to the primary minimum. At higher ionic strengths, flocculation into the secondary minimum becomes more important.

In the OP, there was one question. The answer to the question is that, thermodynamically, DLVO predicts that colloids are not stable. Kinetically, they can be, usually based on the height of the barrier. In very high ionic strength solutions, the secondary minimum will deepen and the colloids will become less stable to flocculation into the secondary minimum. This is a process sometimes called salting out.
Thank you, I've learned something now. Why is it that increasing ionic strength increases secondary minimum stabilization? I do know that electrolytes affect energy barrier by neutralizing charge of particles, but I didn't know they affect depth of secondary minimum.
 
Dario56 said:
Thank you, I've learned something now. Why is it that increasing ionic strength increases secondary minimum stabilization? I do know that electrolytes affect energy barrier by neutralizing charge of particles, but I didn't know they affect depth of secondary minimum.
So, the potential energy curve in DLVO theory is a sum of attractive van der Waals (vdW) forces and repulsive electrostatic forces from the electrical double layer (EDL). Increasing ionic strength of the solution decreases the thickness of the EDL, which means that the repulsive force gets stronger at a shorter distance and weaker at a longer distance. But since the vdW forces don’t change, the total potential ends up with a deeper secondary minimum and a higher barrier to the primary minimum.
 
How do we find the maximum and minimum depth of the secondary well in DLVO , I am using varied particle sizes ( eg 40-60 micrometer)
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
593
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
3K