MHB Do 1 + √5 and 1 - √5 Solve the Equation x² - 2x - 4 = 0?

AI Thread Summary
The discussion focuses on verifying whether the numbers 1 + √5 and 1 - √5 are solutions to the equation x² - 2x - 4 = 0. Participants agree that substituting these values into the equation should yield 0, confirming their validity as solutions. Additionally, it is noted that the sum and product of these numbers correspond to the coefficients in the quadratic equation, further supporting their status as solutions. The conversation emphasizes that this exercise serves more as practice in evaluation rather than a complex problem. Ultimately, both methods confirm that 1 + √5 and 1 - √5 satisfy the equation.
mathdad
Messages
1,280
Reaction score
0
Verify that the numbers 1 + √5 and 1 - √5 both satisfy the equation x^2 - 2x - 4 = 0.

I believe the question is asking to plug the given numbers into the quadratic equation and evaluate individually.

Let x = 1 + √5 and evaluate.

Let x = 1 - √5 and evaluate.

Both numbers should yield 0 = 0.

If the result for each number given is 0 = 0, then we can say that 1 + √5 and 1 - √5 are solutions of the quadratic equation.

Is this right?
 
Mathematics news on Phys.org
In my opinion, your method is valid, but I also think that solving the equation however you choose and showing the resulting roots are equivalent to the given roots is also a way to verify that they satisfy the equation. :D

View attachment 6634

(Evilgrin) (Giggle)(Smoking)(Tongueout)
 

Attachments

  • bbill.jpg
    bbill.jpg
    48.8 KB · Views: 109
Another approach is to say that the numbers $1+\sqrt5$ and $1-\sqrt5$ have sum $2$ and product $-4$, and so they are the solutions of the equation $x^2 - 2x - 4 = 0.$
 
This question is more evaluation practice more than anything else.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top