MHB Do 1 + √5 and 1 - √5 Solve the Equation x² - 2x - 4 = 0?

mathdad
Messages
1,280
Reaction score
0
Verify that the numbers 1 + √5 and 1 - √5 both satisfy the equation x^2 - 2x - 4 = 0.

I believe the question is asking to plug the given numbers into the quadratic equation and evaluate individually.

Let x = 1 + √5 and evaluate.

Let x = 1 - √5 and evaluate.

Both numbers should yield 0 = 0.

If the result for each number given is 0 = 0, then we can say that 1 + √5 and 1 - √5 are solutions of the quadratic equation.

Is this right?
 
Mathematics news on Phys.org
In my opinion, your method is valid, but I also think that solving the equation however you choose and showing the resulting roots are equivalent to the given roots is also a way to verify that they satisfy the equation. :D

View attachment 6634

(Evilgrin) (Giggle)(Smoking)(Tongueout)
 

Attachments

  • bbill.jpg
    bbill.jpg
    48.8 KB · Views: 107
Another approach is to say that the numbers $1+\sqrt5$ and $1-\sqrt5$ have sum $2$ and product $-4$, and so they are the solutions of the equation $x^2 - 2x - 4 = 0.$
 
This question is more evaluation practice more than anything else.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top