- #1
gmastrogiovanni
- 3
- 2
I state the following study and then expose my doubt at the end.
MY SYSTEM
A free particle (absence of forces) on one-dimensional space (X axis).
INITIAL STATE
At t=0 the wave function is a Gaussian wave packet NOT normalizet centered in ##x_{0}## and with standard deviation ##\sigma##:
$$\psi_{\sigma}(x)=\frac{1}{\sigma\sqrt{2\pi}}\thinspace\,e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}}$$ In a non-strict way, I can write: $$\underset{\sigma\rightarrow0}{lim}\,\psi_{\sigma}(x)=\delta(x-x_{0})\,\,\,\,\,\,\,\,\,\,(1)$$ The genaralized function Dirac delta ##\delta(x-x_{0})## is the "improper" eigenvector of operator ##\hat{X}## with eigenvalue ##x_{0}##.
The normalized wave function wave is: $$\psi_{N\sigma}(x)=\frac{1}{\sqrt{\sigma\sqrt{\pi}}}\thinspace\,e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}}$$
CALCULATION OF ENERGY
The hamiltonian operator is: $$\hat{H}=-\,\frac{\,\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}$$ From my calculations it results: $$<E_{\sigma}>=<\psi|\hat{H}\psi>=\int_{-\infty}^{+\infty}\psi_{N\sigma}^{*}\hat{H}\,\psi_{N\sigma}\,\,dx=\frac{\hbar^{2}}{4m\sigma^{2}}$$
From which we deduce that: $$\underset{\sigma\rightarrow0}{lim}\,<E_{\sigma}>=\infty\,\,\,\,\,\,\,\,\,\,(2)$$
THEREFORE
From (1) and (2) if ##\sigma\rightarrow0##: $$\psi_{\sigma}(x)\rightarrow\delta(x-x_{0})$$ $$<E_{\sigma}>\rightarrow\infty$$
1 QUESTION
Is the reasoning wrong?
2 QUESTION
Is ##\delta(x-x_{0}) ## a "not real" state with infinity energy?
3 QUESTION
At t=0 I measure the position x and I get the value ##x_ {0}## without error and,
immediately after the measurement, because of wave function collapse, the wave function is ##\delta(x-x_{0})##.
To measure the position of a particle without error, do I have to supply energy ##E\rightarrow\infty##?
MY SYSTEM
A free particle (absence of forces) on one-dimensional space (X axis).
INITIAL STATE
At t=0 the wave function is a Gaussian wave packet NOT normalizet centered in ##x_{0}## and with standard deviation ##\sigma##:
$$\psi_{\sigma}(x)=\frac{1}{\sigma\sqrt{2\pi}}\thinspace\,e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}}$$ In a non-strict way, I can write: $$\underset{\sigma\rightarrow0}{lim}\,\psi_{\sigma}(x)=\delta(x-x_{0})\,\,\,\,\,\,\,\,\,\,(1)$$ The genaralized function Dirac delta ##\delta(x-x_{0})## is the "improper" eigenvector of operator ##\hat{X}## with eigenvalue ##x_{0}##.
The normalized wave function wave is: $$\psi_{N\sigma}(x)=\frac{1}{\sqrt{\sigma\sqrt{\pi}}}\thinspace\,e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}}$$
CALCULATION OF ENERGY
The hamiltonian operator is: $$\hat{H}=-\,\frac{\,\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}$$ From my calculations it results: $$<E_{\sigma}>=<\psi|\hat{H}\psi>=\int_{-\infty}^{+\infty}\psi_{N\sigma}^{*}\hat{H}\,\psi_{N\sigma}\,\,dx=\frac{\hbar^{2}}{4m\sigma^{2}}$$
From which we deduce that: $$\underset{\sigma\rightarrow0}{lim}\,<E_{\sigma}>=\infty\,\,\,\,\,\,\,\,\,\,(2)$$
THEREFORE
From (1) and (2) if ##\sigma\rightarrow0##: $$\psi_{\sigma}(x)\rightarrow\delta(x-x_{0})$$ $$<E_{\sigma}>\rightarrow\infty$$
1 QUESTION
Is the reasoning wrong?
2 QUESTION
Is ##\delta(x-x_{0}) ## a "not real" state with infinity energy?
3 QUESTION
At t=0 I measure the position x and I get the value ##x_ {0}## without error and,
immediately after the measurement, because of wave function collapse, the wave function is ##\delta(x-x_{0})##.
To measure the position of a particle without error, do I have to supply energy ##E\rightarrow\infty##?