Do we have to check the second case?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the necessity of checking a second case in a proof regarding the immediate successor of a natural number. Participants explore the implications of a defined relationship between natural numbers and the conditions under which certain cases may be deemed unnecessary in a proof context.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that if the relationship $n
  • Others argue that the relationship has not been proven and is merely referenced in a proposition, raising the question of how it could be proven.
  • A participant suggests starting with a definition of the less-than relationship ($<$) to establish the necessary proof.
  • One participant provides definitions from their notes regarding the relationships between natural numbers, indicating that $m
  • Another participant questions whether the established definitions allow for the assumption of the relationship without further proof.

Areas of Agreement / Disagreement

Participants express differing views on whether the second case needs to be checked, with some asserting it is unnecessary if the relationship is proven, while others maintain that the relationship has not been established and requires proof. The discussion remains unresolved regarding the necessity of the second case.

Contextual Notes

The discussion highlights the dependence on prior definitions and the potential limitations of the propositions referenced. There is uncertainty regarding the proof of the relationship $n

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

Proposition:
The natural number $n'$ is the immediate successor of $n$, i.e. there is no natural number $m$ such that $n<m \wedge m<n'$.

Proof:
We assume that there is a $m$ such that $n<m \wedge m<n'$. Then $n \subset m$ and $m \subset n \cup \{n\}$. 1st case: $n \in m$. Then $n \cup \{n\} \subset m$ and so $n'=m$, contradiction.

2nd case: $n \notin m$. Then since $m \subset n \cup \{n\}$ we have that $m \subset n$. Since $n \subset m$ we have $n=m$, contradiction.
Do we have to check the second case knowing that $n<m \leftrightarrow n \in m$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Do we have to check the second case knowing that $n<m \leftrightarrow n \in m$ ?
No, if $n<m \leftrightarrow n \in m$ is proved before the current proposition, then the second case is unnecessary.
 
Evgeny.Makarov said:
No, if $n<m \leftrightarrow n \in m$ is proved before the current proposition, then the second case is unnecessary.

It hasn't been proven, it is referred in a proposition. (Worried)
How could we prove it? (Thinking)
 
evinda said:
It hasn't been proven, it is referred in a proposition.
What does this mean: "it is referred in a proposition"?

evinda said:
How could we prove it?
You should start with a definition of $<$. Isn't this statement proved in your lecture notes?
 
According to my notes:

Definition: For any natural numbers $m,n$ we define:
$m<n \leftrightarrow m \in n (\leftrightarrow \langle m,n \rangle \in \epsilon_{\omega})$

$(m \leq n \leftrightarrow m \in n \lor m=n)$​
where $\epsilon_{\omega}=\{ \langle m,n \rangle\in \omega^2: m \in n \}$.$\epsilon_{\omega}$ defines an order on $\omega$ and is symbolized with $<$.
The non-strict order of $\omega$ that corresponds to the order $\epsilon_{\omega}$ is symbolized with $\leq$, so:

$$n \leq m \leftrightarrow n \in m \lor n=m$$
$$(n<m \leftrightarrow n \in m)$$

Proposition:

  • For any natural numbers $m,n$: $m \leq n \leftrightarrow m \subset n$
  • For any natural numbers $m,n$: $m<n \leftrightarrow m \subsetneq n (\leftrightarrow m \in n)$
 
Last edited:
Evgeny.Makarov said:
No, if $n<m \leftrightarrow n \in m$ is proved before the current proposition, then the second case is unnecessary.
evinda said:
How could we prove it?

evinda said:
According to my notes:

Definition: For any natural numbers $m,n$ we define:
$m<n \leftrightarrow m \in n$​
Then you answered your own question.
 
So we can use the fact that $m<n \leftrightarrow m \in n$ without proving it since we defined it like that, right? (Smile)
 
Yes.
 
Nice... Thanks a lot! (Yes)
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
5K