MHB Do we have to write them separately?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion focuses on solving the differential equation $y'' + xy = 0$ using the power series method. The proposed solution is expressed as a power series, and the coefficients are derived through a recursive relationship, leading to specific values for $a_n$. It is confirmed that the coefficients for $x^0$ and $x^1$ must be written separately to avoid summation issues. The final solution is structured into three distinct summations based on the derived coefficients, with the first summation being zero. The conversation emphasizes the importance of correctly handling the coefficients in the series expansion.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)The differential equation $y''+xy=0$ is given.

I want to find the solution of the differential equation, using the power series method.

That's what I have tried:We are looking for a solution of the form $y(x)= \sum_{n=0}^{\infty} a_n x^n$ with radius of convergence of the power series $R>0$.Then:

$$y'(x)= \sum_{n=1}^{\infty} n a_n x^{n-1}= \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x)= \sum_{n=1}^{\infty} (n+1) n a_{n+1} x^{n-1}= \sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n$$Thus:$$\sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n+ x \sum_{n=0}^{\infty} a_n x^n=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=0}^{\infty} a_n x^{n+1}=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=1}^{\infty} a_{n-1} x^n=0 \\ \Rightarrow 2a_2+\sum_{n=1}^{\infty} \left[ (n+2) (n+1) a_{n+2}+ a_{n-1}\right] x^n=0$$So it has to hold:

$$a_2=0 \\ (n+2) (n+1) a_{n+2}+a_{n-1}=0, \forall n=1,2,3, \dots$$For $n=1$: $3 \cdot 2 \cdot a_3+ a_0=0 \Rightarrow a_3=-\frac{a_0}{6}$

For $n=2$: $4 \cdot 3 \cdot a_4+a_1=0 \Rightarrow a_4=-\frac{a_1}{12}$

For $n=3$: $5 \cdot 4 \cdot a_5+a_2=0 \Rightarrow a_5=0$

For $n=4$: $6 \cdot 5 \cdot a_6+a_3=0 \Rightarrow 30 a_6-\frac{a_0}{6}=0 \Rightarrow a_6=\frac{a_0}{6 \cdot 30}=\frac{a_0}{180}$

For $n=5$: $7 \cdot 6 \cdot a_7+ a_4=0 \Rightarrow 7 \cdot 6 \cdot a_7-\frac{a_1}{12}=0 \Rightarrow a_7=\frac{a_1}{12 \cdot 42}$Will it be as follows?$$a_{3k+2}=0$$

$$a_{3k}=(-1)^k \frac{a_0}{(3k)!} \prod_{i=0}^{k-1} (3i+1)$$$$a_{3k+1}=(-1)^k \frac{a_1}{(3k+1)!} \prod_{i=0}^{k-1} (3i+2)$$

If so, then do we have to write seperately the formula for the coefficients of $x^0, x^1$, because otherwhise the sum would be from $0$ to $-1$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)The differential equation $y''+xy=0$ is given.

I want to find the solution of the differential equation, using the power series method.

That's what I have tried:We are looking for a solution of the form $y(x)= \sum_{n=0}^{\infty} a_n x^n$ with radius of convergence of the power series $R>0$.Then:

$$y'(x)= \sum_{n=1}^{\infty} n a_n x^{n-1}= \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

$$y''(x)= \sum_{n=1}^{\infty} (n+1) n a_{n+1} x^{n-1}= \sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n$$Thus:$$\sum_{n=0}^{\infty} (n+2) (n+1) a_{n+2} x^n+ x \sum_{n=0}^{\infty} a_n x^n=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=0}^{\infty} a_n x^{n+1}=0 \\ \Rightarrow \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n+ \sum_{n=1}^{\infty} a_{n-1} x^n=0 \\ \Rightarrow 2a_2+\sum_{n=1}^{\infty} \left[ (n+2) (n+1) a_{n+2}+ a_{n-1}\right] x^n=0$$So it has to hold:

$$a_2=0 \\ (n+2) (n+1) a_{n+2}+a_{n-1}=0, \forall n=1,2,3, \dots$$For $n=1$: $3 \cdot 2 \cdot a_3+ a_0=0 \Rightarrow a_3=-\frac{a_0}{6}$

For $n=2$: $4 \cdot 3 \cdot a_4+a_1=0 \Rightarrow a_4=-\frac{a_1}{12}$

For $n=3$: $5 \cdot 4 \cdot a_5+a_2=0 \Rightarrow a_5=0$

For $n=4$: $6 \cdot 5 \cdot a_6+a_3=0 \Rightarrow 30 a_6-\frac{a_0}{6}=0 \Rightarrow a_6=\frac{a_0}{6 \cdot 30}=\frac{a_0}{180}$

For $n=5$: $7 \cdot 6 \cdot a_7+ a_4=0 \Rightarrow 7 \cdot 6 \cdot a_7-\frac{a_1}{12}=0 \Rightarrow a_7=\frac{a_1}{12 \cdot 42}$Will it be as follows?$$a_{3k+2}=0$$

$$a_{3k}=(-1)^k \frac{a_0}{(3k)!} \prod_{i=0}^{k-1} (3i+1)$$$$a_{3k+1}=(-1)^k \frac{a_1}{(3k+1)!} \prod_{i=0}^{k-1} (3i+2)$$

If so, then do we have to write seperately the formula for the coefficients of $x^0, x^1$, because otherwhise the sum would be from $0$ to $-1$ ? (Thinking)

Hi evinda, :)

Yes you do. So the final solution will be,

\[y(x)=\sum_{k=0}^{\infty}a_{3k}x^{3k}+\sum_{k=0}^{\infty}a_{3k+1}x^{3k+1}+\sum_{k=0}^{\infty}a_{3k+2}x^{3k+2}\]

And of course the first summation would be zero since all the coefficients are zero and the for the second and third summations you can substitute the $a_{3k+1}$ and $a_{3k+2}$ values that you have obtained.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
412
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K