MHB Double-Check My Problem Solving | Correct Reasoning Verification

  • Thread starter Thread starter Albert Einstein1
  • Start date Start date
AI Thread Summary
The discussion centers on verifying the correctness of a problem-solving approach regarding a continuous function at x=0. The initial poster acknowledges a misunderstanding of the question, clarifying that while the function is continuous, demonstrating that the limit as x approaches 0 equals 1 is necessary. Albert's reasoning is challenged, specifically regarding the inequalities he presented, which are incorrect near x=0. Additionally, there are errors in the limits he calculated, as they do not equal 1 but should be 0 instead. The conversation emphasizes the importance of accurately applying mathematical principles in problem-solving.
Albert Einstein1
Messages
3
Reaction score
0
I am not entirely sure if I solved this problem correctly. Please let me know if my reasoning is flawed. Thank you and I appreciate your help greatly.
 

Attachments

  • 0EC6D101-ED4B-4D59-9103-D8F298F7F027.jpeg
    0EC6D101-ED4B-4D59-9103-D8F298F7F027.jpeg
    42 KB · Views: 119
  • 779A43FE-A23E-449E-9B66-A4FCFD72DE41.jpeg
    779A43FE-A23E-449E-9B66-A4FCFD72DE41.jpeg
    279.4 KB · Views: 114
Mathematics news on Phys.org
The function is continuous, just substitute x = 0...
 
On second thought, I didn't read the question properly... Please disregard my previous post.
 
The function IS continuous at x=0 but you need to show that $\lim_{x\to 0} f(x)= 1$ to show THAT so continuity cannot be used to do this exercise.

Albert, you state that $-1\le x^2- 2\le 1$. That is the same as $1\le x^2\le 3$. If x is close to 0 that is NOT true! You also have $\lim_{x\to 0} -x^2= 1$ and $\lim_{x\to 0} x^2= 1$. Those are certainly not true! Did you mean "= 0"?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
11
Views
3K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Back
Top