MHB Double-Check My Problem Solving | Correct Reasoning Verification

  • Thread starter Thread starter Albert Einstein1
  • Start date Start date
Click For Summary
The discussion centers on verifying the correctness of a problem-solving approach regarding a continuous function at x=0. The initial poster acknowledges a misunderstanding of the question, clarifying that while the function is continuous, demonstrating that the limit as x approaches 0 equals 1 is necessary. Albert's reasoning is challenged, specifically regarding the inequalities he presented, which are incorrect near x=0. Additionally, there are errors in the limits he calculated, as they do not equal 1 but should be 0 instead. The conversation emphasizes the importance of accurately applying mathematical principles in problem-solving.
Albert Einstein1
Messages
3
Reaction score
0
I am not entirely sure if I solved this problem correctly. Please let me know if my reasoning is flawed. Thank you and I appreciate your help greatly.
 

Attachments

  • 0EC6D101-ED4B-4D59-9103-D8F298F7F027.jpeg
    0EC6D101-ED4B-4D59-9103-D8F298F7F027.jpeg
    42 KB · Views: 128
  • 779A43FE-A23E-449E-9B66-A4FCFD72DE41.jpeg
    779A43FE-A23E-449E-9B66-A4FCFD72DE41.jpeg
    279.4 KB · Views: 123
Mathematics news on Phys.org
The function is continuous, just substitute x = 0...
 
On second thought, I didn't read the question properly... Please disregard my previous post.
 
The function IS continuous at x=0 but you need to show that $\lim_{x\to 0} f(x)= 1$ to show THAT so continuity cannot be used to do this exercise.

Albert, you state that $-1\le x^2- 2\le 1$. That is the same as $1\le x^2\le 3$. If x is close to 0 that is NOT true! You also have $\lim_{x\to 0} -x^2= 1$ and $\lim_{x\to 0} x^2= 1$. Those are certainly not true! Did you mean "= 0"?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K