Double Pulsar: 16 Year Study Validates Relativity

  • Context: Undergrad 
  • Thread starter Thread starter fresh_42
  • Start date Start date
  • Tags Tags
    Data Pulsar Set
Click For Summary
SUMMARY

The 16-year study of the double pulsar PSR J0737–3039A/B has provided significant advancements in the measurement of relativistic effects, confirming Einstein's theories of gravity. This binary system, consisting of two active radio pulsars orbiting every 2.45 hours with an eccentricity of 0.088, has allowed for the detection of seven post-Keplerian parameters, the highest for any known binary pulsar. The findings include new observations of light propagation in strong gravitational fields and the implications for neutron star moment of inertia and gravitational wave descriptions, validating general relativity at a precision of 1.3 x 10^-4 with 95% confidence.

PREREQUISITES
  • Understanding of general relativity principles
  • Familiarity with pulsar astronomy
  • Knowledge of post-Keplerian parameters
  • Basic concepts of gravitational wave physics
NEXT STEPS
  • Research the implications of relativistic spin-orbit coupling in neutron stars
  • Study the methods for measuring post-Keplerian parameters in binary systems
  • Explore the effects of light bending in strong gravitational fields
  • Investigate alternative theories of gravity and their tests
USEFUL FOR

Astronomers, astrophysicists, and researchers in gravitational physics will benefit from this discussion, particularly those focused on pulsar studies and tests of general relativity.

fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,815
Reaction score
28,439
I'm not sure if this belongs to astronomy or GR. But as it - once again - proves Einstein right, I posted it here for all who need another paper to conquer all who doubt. And I think it is an interesting paper (53 pages), at least from my layman's point of view.

Strong-Field Gravity Tests with the Double Pulsar said:
Continued timing observations of the double pulsar ##\text{PSR J0737–3039A/B},## which consists of two active radio pulsars (##A## and ##B##) that orbit each other with a period of ##2.45 \,h## in a mildly eccentric (##e=0.088##) binary system, have led to large improvements in the measurement of relativistic effects in this system. With a ##16##-yr data span, the results enable precision tests of theories of gravity for strongly self-gravitating bodies and also reveal new relativistic effects that have been expected but are now observed for the first time. These include effects of light propagation in strong gravitational fields which are currently not testable by any other method. In particular, we observe the effects of retardation and aberrational light bending that allow determination of the spin direction of the pulsar. In total, we detect seven post-Keplerian parameters in this system, more than for any other known binary pulsar. For some of these effects, the measurement precision is now so high that for the first time we have to take higher-order contributions into account. These include the contribution of the A pulsar’s effective mass loss (due to spin-down) to the observed orbital period decay, a relativistic deformation of the orbit, and the effects of the equation of state of superdense matter on the observed post-Keplerian parameters via relativistic spin-orbit coupling. We discuss the implications of our findings, including those for the moment of inertia of neutron stars, and present the currently most precise test of general relativity’s quadrupolar description of gravitational waves, validating the prediction of general relativity at a level of ##1.3 \cdot 10^{-4}## with ##95\%## confidence. We demonstrate the utility of the double pulsar for tests of alternative theories of gravity by focusing on two specific examples and also discuss some implications of the observations for studies of the interstellar medium and models for the formation of the double pulsar system. Finally, we provide context to other types of related experiments and prospects for the future.
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.11.041050
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041050

And here is a pop-science summary:
https://www.sciencealert.com/16-year-study-of-extreme-stars-has-once-again-validated-relativity
 
  • Like
  • Informative
  • Love
Likes   Reactions: vanhees71, Drakkith, Ibix and 2 others

Similar threads

Replies
9
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
7
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 66 ·
3
Replies
66
Views
7K