I Double Pulsar: 16 Year Study Validates Relativity

  • I
  • Thread starter Thread starter fresh_42
  • Start date Start date
  • Tags Tags
    Data Pulsar Set
fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,627
Reaction score
27,767
I'm not sure if this belongs to astronomy or GR. But as it - once again - proves Einstein right, I posted it here for all who need another paper to conquer all who doubt. And I think it is an interesting paper (53 pages), at least from my layman's point of view.

Strong-Field Gravity Tests with the Double Pulsar said:
Continued timing observations of the double pulsar ##\text{PSR J0737–3039A/B},## which consists of two active radio pulsars (##A## and ##B##) that orbit each other with a period of ##2.45 \,h## in a mildly eccentric (##e=0.088##) binary system, have led to large improvements in the measurement of relativistic effects in this system. With a ##16##-yr data span, the results enable precision tests of theories of gravity for strongly self-gravitating bodies and also reveal new relativistic effects that have been expected but are now observed for the first time. These include effects of light propagation in strong gravitational fields which are currently not testable by any other method. In particular, we observe the effects of retardation and aberrational light bending that allow determination of the spin direction of the pulsar. In total, we detect seven post-Keplerian parameters in this system, more than for any other known binary pulsar. For some of these effects, the measurement precision is now so high that for the first time we have to take higher-order contributions into account. These include the contribution of the A pulsar’s effective mass loss (due to spin-down) to the observed orbital period decay, a relativistic deformation of the orbit, and the effects of the equation of state of superdense matter on the observed post-Keplerian parameters via relativistic spin-orbit coupling. We discuss the implications of our findings, including those for the moment of inertia of neutron stars, and present the currently most precise test of general relativity’s quadrupolar description of gravitational waves, validating the prediction of general relativity at a level of ##1.3 \cdot 10^{-4}## with ##95\%## confidence. We demonstrate the utility of the double pulsar for tests of alternative theories of gravity by focusing on two specific examples and also discuss some implications of the observations for studies of the interstellar medium and models for the formation of the double pulsar system. Finally, we provide context to other types of related experiments and prospects for the future.
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.11.041050
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041050

And here is a pop-science summary:
https://www.sciencealert.com/16-year-study-of-extreme-stars-has-once-again-validated-relativity
 
  • Like
  • Informative
  • Love
Likes vanhees71, Drakkith, Ibix and 2 others
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top