E=hf for massive particles, but which Energy exactly?

Click For Summary

Discussion Overview

The discussion centers around the application of the equation E=hf for massive particles, specifically questioning which form of energy is being referenced—total energy or kinetic energy. Participants explore the implications of this distinction in the context of relativistic physics and de Broglie's relations.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • One participant expresses confusion regarding whether E=hf refers to total energy (kinetic plus rest energy) or only kinetic energy, noting inconsistencies in their reasoning.
  • Another participant asserts that the total energy is indeed the correct reference, providing a definition involving Minkowski scalars and the energy-momentum relation.
  • Some participants clarify de Broglie's relations, stating that for a massive particle at rest, the momentum is zero, leading to an infinite wavelength and a non-zero frequency, which they argue does not present a contradiction.
  • A participant questions how a particle at rest can have a frequency greater than zero, expressing concern over the relationship between wavelength and frequency as the wavelength approaches infinity.
  • One participant explains that for massive particles, the relationship between wavelength and frequency does not follow the same rules as for massless particles like photons, suggesting that the issue raised is not applicable to massive particles.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of E=hf for massive particles. There are competing views regarding the nature of energy being referenced and the implications of de Broglie's relations.

Contextual Notes

Participants reference various formulations of energy in relativistic physics and the implications of rest mass on frequency and wavelength, indicating a complex interplay of definitions and assumptions that remain unresolved.

AlonZ
Messages
8
Reaction score
0
TL;DR
which energy is it in E=hf and in lorentz invariant?
Hi there, I'm a bit confused about the E=hf equation for mass particle(f for frequency), and Lorentz Invariant (E^2 -p^2c^2=m^2c^4).
The question is, which energy is it? Total Energy- Kinetic plus Rest, or only kinetic energy.
Now, if it's total energy, then you get that a particle at rest (Ek=0) has frequency which can't be right by De-Broli's equation p=h/lambda.
And if it's only kinetic energy then I get the following: lambda=h/p=hv/mv^2--> 2Ek=mv^2=hv/lambda=hf (v for speed, f for freq).
so both ways don't add up for me, i have to be wrong somewhere, will be glad for your help.
Thanks a lot.
 
Last edited:
Physics news on Phys.org
In relativistic physics it's always convenient to work with Minkowski scalars, vectors, and tensors. That's why for a free particle you define the energy as you wrote as ##E=\sqrt{m^2 c^4+\vec{p}^2 c^2}##, i.e., including rest energy. Correspondingly for the corresponding energy-momentum eigenstates of free particles you have the equation
$$-\hbar^2 \Box \psi(x)=m^2 c^2 \psi(x),$$
where ##\psi(x)## is any kind of relativistic free wave function (Klein-Gordon, Dirac, etc.).

You can of course always redefine the absolute level of energy by an arbitrary constant, i.e., you can use $$E_{\text{kin}}=\sqrt{m^2 c^4+\vec{p}^2 c^2}-mc^2.$$
This then refers to new wave functions only changed by a phase factor ##\exp(-\mathrm{i} m c^2 t/\hbar)## relative to the covariant wave functions defined above. As in classical (relativistic or Newtonian) physics the absolute level of energy is not observable, only energy differences.
 
  • Like
Likes   Reactions: atyy
AlonZ said:
The question is, which energy is it?
It is total energy.

AlonZ said:
Now, if it's total energy, then you get that a particle at rest (Ek=0) has frequency which can't be right by De-Broli's equation p=h/lambda.
You have a misunderstanding of de Broglie’s relations. See: https://en.m.wikipedia.org/wiki/Matter_wave

The de Broglie frequency is given by ##E=\hbar \omega## and the de Broglie wavelength is given by ##\vec p=\hbar \vec k## where ##\lambda=2\pi/k##. So for a massive particle at rest ##p=0## and ##E>0## so ##\lambda = \infty## and ##\omega>0##. I am not sure why you think that is an issue.
 
  • Like
Likes   Reactions: vanhees71 and atyy
Dale said:
It is total energy.

You have a misunderstanding of de Broglie’s relations. See: https://en.m.wikipedia.org/wiki/Matter_wave

The de Broglie frequency is given by ##E=\hbar \omega## and the de Broglie wavelength is given by ##\vec p=\hbar \vec k## where ##\lambda=2\pi/k##. So for a massive particle at rest ##p=0## and ##E>0## so ##\lambda = \infty## and ##\omega>0##. I am not sure why you think that is an issue.
What's troubling me is how does a particle at rest has frequency different than 0, as you said w>0.
I'm attaching a file so you can see exactly where my problem is.
if lambda goes to infinity, doesn't frequency has to go to zero? As it does not in the attached photo.
Thanks a lot for the informative replies.
 

Attachments

  • Question2.jpeg
    Question2.jpeg
    21 KB · Views: 159
The plane-wave solution of the Klein-Gordon equation is
$$u_{\vec{p}}(t,\vec{x})=\frac{1}{\sqrt{(2 \pi)^3 2 E_{\vec{p}}}} \exp(-\mathrm{i} E_{\vec{p}} t+\mathrm{i} \vec{p} \cdot \vec{x}),$$
where I use natural units with ##\hbar=c=1##. The normalization is chosen in the relativistic covariant convention in QFT. The energy is given by the "on-shell condition",
$$E_{\vec{p}}=\sqrt{\vec{p}^2+m^2},$$
i.e., such that ##(p^{\mu})=(E,\vec{p})## transforms as a four-vector. For ##\vec{p}=0## you get ##E_0=m##. There's no problem with that. You can choose the absolute level of the energy as you like without changing any physics, and here it's convenient to choose it in this way such that ##(p^{\mu})## is a four-vector.
 
  • Like
Likes   Reactions: Dale
AlonZ said:
if lambda goes to infinity, doesn't frequency has to go to zero?
Not in general, no. For a photon ##\lambda \omega =c## so for them it is true that as ##\lambda\rightarrow\infty## we must have ##\omega\rightarrow 0##. But massive particles don’t have such a relationship so it isn’t a problem for massive particles. And massless particles can never be at rest so it isn’t a problem for photons either.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K