Eddy currents in electromagnetic train

AI Thread Summary
Eddy currents in electromagnetic trains are influenced by the magnetic field strength, which increases with the addition of more magnets. The discussion clarifies that the setup involves permanent neodymium magnets that act as electromagnets when connected to a battery, creating a complete circuit. As electrons flow through the conductive wire, they generate a magnetic field that interacts with the magnets, resulting in forward motion. Visual aids, such as drawings or pictures of the setup, are suggested for better understanding. Overall, the explanation highlights the relationship between magnetism, electron flow, and motion in the context of electromagnetic trains.
Einstein44
Messages
125
Reaction score
31
Homework Statement
I am currently working on a physics project, where I am experimenting with a small electromagnetic train (can look up on YouTube), which is basically a battery with magnets on either side moving through a bare copper coil.

My aim is to determine the effect on the average velocity of the train by increasing the magnetic field as I increase the magnets on the train (and therefore also its weight). Thats where I came across eddy currents and I wasn't really able to find out how it would affect this train, as I couldn't find much on eddy currents on the internet.

Now my question is if there would be eddy currents that would affect the velocity of this train as I increase the magnetic field and how it would change it, as well as how I could calculate this.
Relevant Equations
Magnitude of eddy currents: I= -1/R × dΦB/dt

Eddy Current loss: We = (Ie)^2 x Rcore
where We= Eddy current loss
Ie= Eddy Current
Re= Resistance of core
I know that the magnitude of the eddy currents is proportional to the magnetic field, which means it should increase as I add more magnets. However I am unsure if this approach is correct.
 
Physics news on Phys.org
Welcome to PF. :smile:

Can you attach some drawings or pictures of your setup? I think we will need to see it visually in order to help. Also, it sounds like your electromagnets on the train are DC, correct? Or is there a mix of electromagnets and permanent magnets?
 
The magnets I am using are permanent magnets (neodymium magnets), which become electromagnets due to the voltage from the battery they are attached to (if I am not mistaken that this would be called an electromagnet).

The way this work is that the magnets on either side of the battery touch the wire and create a complete circuit. This means electrons flow out one side of the battery, through the coil and back in the other side of the battery.
When electrons travel through a conductive wire, they generate a magnetic field. The poles of the magnetic field generated by the coiled wire are positioned so that the magnet on one side of the battery is pulled (N/S) and the other side is repelled (N/N), creating a forward motion. (please correct me if this explanation is not correct, but this should give you a better idea)

I will attach some pictures below to better visualise the setup.
tempImageEJrURw.png
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top