Eddy currents in electromagnetic train

Click For Summary

Homework Help Overview

The discussion revolves around the concept of eddy currents in the context of an electromagnetic train, specifically focusing on the relationship between magnetic fields and the generation of eddy currents using magnets.

Discussion Character

  • Exploratory, Conceptual clarification

Approaches and Questions Raised

  • The original poster attempts to understand how the magnitude of eddy currents relates to the number of magnets used. Some participants question the setup and the type of magnets involved, seeking clarification on whether they are using DC electromagnets or a combination of electromagnets and permanent magnets.

Discussion Status

Participants are actively engaging in clarifying the original poster's setup and understanding of the concepts involved. There is a request for visual aids to better comprehend the arrangement, and some guidance is offered regarding the nature of the magnets being used.

Contextual Notes

The discussion includes a potential misunderstanding regarding the classification of the magnets and their operation, as well as the need for visual representation to facilitate further assistance.

Einstein44
Messages
125
Reaction score
31
Homework Statement
I am currently working on a physics project, where I am experimenting with a small electromagnetic train (can look up on YouTube), which is basically a battery with magnets on either side moving through a bare copper coil.

My aim is to determine the effect on the average velocity of the train by increasing the magnetic field as I increase the magnets on the train (and therefore also its weight). Thats where I came across eddy currents and I wasn't really able to find out how it would affect this train, as I couldn't find much on eddy currents on the internet.

Now my question is if there would be eddy currents that would affect the velocity of this train as I increase the magnetic field and how it would change it, as well as how I could calculate this.
Relevant Equations
Magnitude of eddy currents: I= -1/R × dΦB/dt

Eddy Current loss: We = (Ie)^2 x Rcore
where We= Eddy current loss
Ie= Eddy Current
Re= Resistance of core
I know that the magnitude of the eddy currents is proportional to the magnetic field, which means it should increase as I add more magnets. However I am unsure if this approach is correct.
 
Physics news on Phys.org
Welcome to PF. :smile:

Can you attach some drawings or pictures of your setup? I think we will need to see it visually in order to help. Also, it sounds like your electromagnets on the train are DC, correct? Or is there a mix of electromagnets and permanent magnets?
 
The magnets I am using are permanent magnets (neodymium magnets), which become electromagnets due to the voltage from the battery they are attached to (if I am not mistaken that this would be called an electromagnet).

The way this work is that the magnets on either side of the battery touch the wire and create a complete circuit. This means electrons flow out one side of the battery, through the coil and back in the other side of the battery.
When electrons travel through a conductive wire, they generate a magnetic field. The poles of the magnetic field generated by the coiled wire are positioned so that the magnet on one side of the battery is pulled (N/S) and the other side is repelled (N/N), creating a forward motion. (please correct me if this explanation is not correct, but this should give you a better idea)

I will attach some pictures below to better visualise the setup.
tempImageEJrURw.png
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
26
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K