Eigenvalues of a Linear Transformation

Click For Summary
SUMMARY

The eigenvalues of the linear transformation represented by the matrix \(A^{t}A\) can be determined using the relationship \((A^{T}A)x=\lambda x\). The primary eigenvalue is \(\lambda = a_1^2 + a_2^2 + \ldots + a_n^2\), where \(x = (a_1, a_2, \ldots, a_n)^T\) is the corresponding eigenvector. Additionally, any vector \(y\) orthogonal to \(x\) results in an eigenvalue of \(0\), indicating that all other eigenvalues of \(A^{t}A\) are zero. This conclusion is reached through matrix multiplication and properties of symmetric matrices.

PREREQUISITES
  • Understanding of linear transformations and eigenvalues
  • Familiarity with matrix multiplication and properties
  • Knowledge of symmetric matrices and diagonalization
  • Proficiency in using orthogonal matrices in linear algebra
NEXT STEPS
  • Study the process of diagonalization of symmetric matrices
  • Learn about the Singular Value Decomposition (SVD) of matrices
  • Explore the implications of eigenvalues in multivariate statistics
  • Investigate the geometric interpretation of eigenvalues and eigenvectors
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, as well as data scientists and engineers applying linear transformations in machine learning and statistical analysis.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I got stuck. Hope you can shed some light on it. :)

Find all eigenvalues of a linear transformation \(f\) whose matrix in some basis is \(A^{t}.A\) where \(A=(a_1,\cdots, a_n)\).

Of course if we write the matrix of the linear transformation we get,

\[A^{t}.A=\begin{pmatrix}a_1^2 & a_{1}a_2 & \cdots & a_{1}a_{n}\\a_2 a_1 & a_2^2 &\cdots & a_{2}a_{n}\\.&.&\cdots&.\\.&.&\cdots&.\\a_n a_1 & a_{n}a_2 & \cdots & a_{n}^2\end{pmatrix}\]

Now this is a symmetric matrix. So it could be written as \(A^{t}.A=QDQ^T\) where \(Q\) is a orthogonal matrix and \(D\) is a diagonal matrix. If we can do this the diagonal elements of the diagonal matrix gives all the eigenvalues we need. However I have no idea how break \(A^{t}.A\) into \(QDQ^T\). Or does any of you see a different approach to this problem which is much more easier? :)


 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

Here's a question I got stuck. Hope you can shed some light on it. :)
Of course if we write the matrix of the linear transformation we get,

\[A^{t}.A=\begin{pmatrix}a_1^2 & a_{1}a_2 & \cdots & a_{1}a_{n}\\a_2 a_1 & a_2^2 &\cdots & a_{2}a_{n}\\.&.&\cdots&.\\.&.&\cdots&.\\a_n a_1 & a_{n}a_2 & \cdots & a_{n}^2\end{pmatrix}\]

Now this is a symmetric matrix. So it could be written as \(A^{t}.A=QDQ^T\) where \(Q\) is a orthogonal matrix and \(D\) is a diagonal matrix. If we can do this the diagonal elements of the diagonal matrix gives all the eigenvalues we need. However I have no idea how break \(A^{t}.A\) into \(QDQ^T\). Or does any of you see a different approach to this problem which is much more easier? :)




I think I found a way to solve this problem. The method seems quite obvious but if you see any mistakes in it please let me know. :)

So we know that,

\[(A^{T}A)x=\lambda x\]

where \(x\) is the eigenvector corresponding to \(\lambda\). We simply multiply both sides by \(A\) and use the associative property of matrix multiplication.

\[A(A^{T}A)x=\lambda (Ax)\]

\[(AA^{T})(Ax)=\lambda (Ax)\]

\[(a_1^2+a^2_2+\cdots+a_n^2)(Ax)=\lambda (Ax)\]

Therefore,

\[\lambda = a_1^2+a^2_2+\cdots+a_n^2\]

And that's it! Yay, we found the eigenvalue. :p
 
You have found one eigenvalue, namely $\lambda = a_1^2+a_2^2+\ldots+a_n^2$. In fact, if $x = (a_1,a_2,\ldots,a_n)^T$ then $x$ is an eigenvector, with eigenvalue $\lambda$.

Now suppose that $y = (b_1,b_2,\ldots,b_n)^T$ is a (nonzero) vector orthogonal to $x$, $x.y = 0$. If you form the product $A^TAy$, you will find that its $i$th coordinate is $a_i(x.y) = 0$ for $i=1,2,\ldots,n$, and so $A^TAy = 0$. That shows that $y$ is an eigenvector of $A^TA$, corresponding to the eigenvalue $0$. In other words, all the other eigenvalues of $A^TA$ are $0$.
 
Opalg said:
You have found one eigenvalue, namely $\lambda = a_1^2+a_2^2+\ldots+a_n^2$. In fact, if $x = (a_1,a_2,\ldots,a_n)^T$ then $x$ is an eigenvector, with eigenvalue $\lambda$.

Now suppose that $y = (b_1,b_2,\ldots,b_n)^T$ is a (nonzero) vector orthogonal to $x$, $x.y = 0$. If you form the product $A^TAy$, you will find that its $i$th coordinate is $a_i(x.y) = 0$ for $i=1,2,\ldots,n$, and so $A^TAy = 0$. That shows that $y$ is an eigenvector of $A^TA$, corresponding to the eigenvalue $0$. In other words, all the other eigenvalues of $A^TA$ are $0$.

Wow, thanks very much for completing my answer. It never occurred me that 0 could be a possibility of an eigenvalue. :)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 52 ·
2
Replies
52
Views
4K