MHB Eigenvalues of a Linear Transformation

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I got stuck. Hope you can shed some light on it. :)

Find all eigenvalues of a linear transformation \(f\) whose matrix in some basis is \(A^{t}.A\) where \(A=(a_1,\cdots, a_n)\).

Of course if we write the matrix of the linear transformation we get,

\[A^{t}.A=\begin{pmatrix}a_1^2 & a_{1}a_2 & \cdots & a_{1}a_{n}\\a_2 a_1 & a_2^2 &\cdots & a_{2}a_{n}\\.&.&\cdots&.\\.&.&\cdots&.\\a_n a_1 & a_{n}a_2 & \cdots & a_{n}^2\end{pmatrix}\]

Now this is a symmetric matrix. So it could be written as \(A^{t}.A=QDQ^T\) where \(Q\) is a orthogonal matrix and \(D\) is a diagonal matrix. If we can do this the diagonal elements of the diagonal matrix gives all the eigenvalues we need. However I have no idea how break \(A^{t}.A\) into \(QDQ^T\). Or does any of you see a different approach to this problem which is much more easier? :)


 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

Here's a question I got stuck. Hope you can shed some light on it. :)
Of course if we write the matrix of the linear transformation we get,

\[A^{t}.A=\begin{pmatrix}a_1^2 & a_{1}a_2 & \cdots & a_{1}a_{n}\\a_2 a_1 & a_2^2 &\cdots & a_{2}a_{n}\\.&.&\cdots&.\\.&.&\cdots&.\\a_n a_1 & a_{n}a_2 & \cdots & a_{n}^2\end{pmatrix}\]

Now this is a symmetric matrix. So it could be written as \(A^{t}.A=QDQ^T\) where \(Q\) is a orthogonal matrix and \(D\) is a diagonal matrix. If we can do this the diagonal elements of the diagonal matrix gives all the eigenvalues we need. However I have no idea how break \(A^{t}.A\) into \(QDQ^T\). Or does any of you see a different approach to this problem which is much more easier? :)




I think I found a way to solve this problem. The method seems quite obvious but if you see any mistakes in it please let me know. :)

So we know that,

\[(A^{T}A)x=\lambda x\]

where \(x\) is the eigenvector corresponding to \(\lambda\). We simply multiply both sides by \(A\) and use the associative property of matrix multiplication.

\[A(A^{T}A)x=\lambda (Ax)\]

\[(AA^{T})(Ax)=\lambda (Ax)\]

\[(a_1^2+a^2_2+\cdots+a_n^2)(Ax)=\lambda (Ax)\]

Therefore,

\[\lambda = a_1^2+a^2_2+\cdots+a_n^2\]

And that's it! Yay, we found the eigenvalue. :p
 
You have found one eigenvalue, namely $\lambda = a_1^2+a_2^2+\ldots+a_n^2$. In fact, if $x = (a_1,a_2,\ldots,a_n)^T$ then $x$ is an eigenvector, with eigenvalue $\lambda$.

Now suppose that $y = (b_1,b_2,\ldots,b_n)^T$ is a (nonzero) vector orthogonal to $x$, $x.y = 0$. If you form the product $A^TAy$, you will find that its $i$th coordinate is $a_i(x.y) = 0$ for $i=1,2,\ldots,n$, and so $A^TAy = 0$. That shows that $y$ is an eigenvector of $A^TA$, corresponding to the eigenvalue $0$. In other words, all the other eigenvalues of $A^TA$ are $0$.
 
Opalg said:
You have found one eigenvalue, namely $\lambda = a_1^2+a_2^2+\ldots+a_n^2$. In fact, if $x = (a_1,a_2,\ldots,a_n)^T$ then $x$ is an eigenvector, with eigenvalue $\lambda$.

Now suppose that $y = (b_1,b_2,\ldots,b_n)^T$ is a (nonzero) vector orthogonal to $x$, $x.y = 0$. If you form the product $A^TAy$, you will find that its $i$th coordinate is $a_i(x.y) = 0$ for $i=1,2,\ldots,n$, and so $A^TAy = 0$. That shows that $y$ is an eigenvector of $A^TA$, corresponding to the eigenvalue $0$. In other words, all the other eigenvalues of $A^TA$ are $0$.

Wow, thanks very much for completing my answer. It never occurred me that 0 could be a possibility of an eigenvalue. :)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top