- #1
binbagsss
- 1,266
- 11
I have in my lecture notes that ##E_{k}(t=0) =1 ##,
##E_k (t)## the Eisenstein series given by:
##E_k (t) = 1 - \frac{2k}{B_k} \sum\limits^{\infty}_1 \sigma_{k-1}(n) q^{n} ##
##B_k## Bermouli number
##q^n = e^{ 2 \pi i n t} ##
context modular forms. Also have set ##lim t \to i\infty = 0## , i.e ##lim q \to 0 = 0##
##n=0## sets this to ##1##
so I have
##E_k (t) = 1 - \frac{2k}{B_k} \sum\limits^{\infty}_1 \sigma_{k-1}(n) ## ??
##E_k (t)## the Eisenstein series given by:
##E_k (t) = 1 - \frac{2k}{B_k} \sum\limits^{\infty}_1 \sigma_{k-1}(n) q^{n} ##
##B_k## Bermouli number
##q^n = e^{ 2 \pi i n t} ##
context modular forms. Also have set ##lim t \to i\infty = 0## , i.e ##lim q \to 0 = 0##
##n=0## sets this to ##1##
so I have
##E_k (t) = 1 - \frac{2k}{B_k} \sum\limits^{\infty}_1 \sigma_{k-1}(n) ## ??