MHB Elementary Number Theory proof

Click For Summary
To prove that if \( k \) divides integers \( a \) and \( b \), then \( k \) divides \( as + bt \) for any integers \( s \) and \( t \), start by expressing \( a \) and \( b \) as \( a = km \) and \( b = kn \) for some integers \( m \) and \( n \). Substituting these into the expression \( as + bt \) gives \( (km)s + (kn)t = k(ms + nt) \). Since \( ms + nt \) is an integer, it follows that \( k \) divides \( as + bt \). This confirms the proof is valid, and the approach should focus on the generality of \( s \) and \( t \) rather than specific values.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
 
Mathematics news on Phys.org
Cbarker1 said:
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
Hi Cbarker1,

$s$ and $t$ are arbitrary integers in the question, you should not use them as you do in the proof, where they are fixed integers that depend on $a$, $b$, and $k$.

You can say that there are integers $m$ and $n$ such that $a=km$ and $b=kn$. Now, you have:
$$
as+bt = (km)s + (kn)t = k(ms+nt)
$$
As $ms+nt$ is an integer, this shows that $k$ divides $as+bt$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads