MHB Elementary Number Theory proof

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
 
Mathematics news on Phys.org
Cbarker1 said:
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
Hi Cbarker1,

$s$ and $t$ are arbitrary integers in the question, you should not use them as you do in the proof, where they are fixed integers that depend on $a$, $b$, and $k$.

You can say that there are integers $m$ and $n$ such that $a=km$ and $b=kn$. Now, you have:
$$
as+bt = (km)s + (kn)t = k(ms+nt)
$$
As $ms+nt$ is an integer, this shows that $k$ divides $as+bt$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top