MHB Elementary Number Theory proof

Click For Summary
SUMMARY

The discussion centers on proving that if an integer \( k \) divides integers \( a \) and \( b \), then \( k \) also divides \( as + bt \) for any integers \( s \) and \( t \). The proof begins by expressing \( a \) and \( b \) as \( a = km \) and \( b = kn \) for some integers \( m \) and \( n \). The expression \( as + bt \) simplifies to \( k(ms + nt) \), demonstrating that \( k \) divides \( as + bt \) since \( ms + nt \) is an integer.

PREREQUISITES
  • Understanding of basic integer properties and divisibility
  • Familiarity with algebraic manipulation of equations
  • Knowledge of integer representation in the form of \( a = km \)
  • Basic concepts of number theory, particularly related to divisors
NEXT STEPS
  • Study the properties of divisibility in number theory
  • Learn about linear combinations of integers and their implications
  • Explore proofs involving the greatest common divisor (GCD)
  • Investigate the implications of the Euclidean algorithm in number theory
USEFUL FOR

This discussion is beneficial for students of mathematics, particularly those studying number theory, as well as educators looking for clear proofs of divisibility properties. It is also useful for anyone interested in enhancing their understanding of algebraic proofs.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
 
Mathematics news on Phys.org
Cbarker1 said:
Dear Everyone,

Here is the question:

"Prove that if $k$ divides the integers $a$ and $b$, then $k$ divides $as+bt$ for every pair of integers $s$ and $t$ for every pair of integers."

The attempted work:

Suppose $k$ divides $a$ and $k$ divides $b$, where $a,b\in\mathbb{Z}$. Then, $a=kt$ and $b=ks$, where $s,t\in\mathbb{Z}$ (Here is where I am stuck).

Do I solve for $k$?

If I do solve for $k$, then it yields the
$k=\frac{a}{t}$. Then, $b=\frac{as}{t}$. So $bt-as=0$. Then $0$ divides $bt-as$.

So is it right to the proof this way?
Hi Cbarker1,

$s$ and $t$ are arbitrary integers in the question, you should not use them as you do in the proof, where they are fixed integers that depend on $a$, $b$, and $k$.

You can say that there are integers $m$ and $n$ such that $a=km$ and $b=kn$. Now, you have:
$$
as+bt = (km)s + (kn)t = k(ms+nt)
$$
As $ms+nt$ is an integer, this shows that $k$ divides $as+bt$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
819
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K