MHB Eliminating constants in a second derivative of a function

bergausstein
Messages
191
Reaction score
0

Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
 
Physics news on Phys.org
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?
 
bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y= 0

- - - Updated - - -

bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y
 
MarkFL said:
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?

I can't find it. :(
 
bergausstein said:
I can't find it. :(

You need not search, you have been provided with the factors. (Tmi)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top