MHB Eliminating constants in a second derivative of a function

Click For Summary
The discussion focuses on eliminating constants from the second derivative of the function y = c1 e^(ax)cos(bx) + c2 e^(ax)sin(bx). After taking the first and second derivatives, the user seeks assistance in simplifying the expressions and finding factors that will lead to a zero sum when combined. The solution involves multiplying the first derivative by 2a and the original function by (a^2 + b^2) to achieve the equation y'' + 2ay' + (a^2 + b^2)y = 0. The conversation emphasizes the importance of correctly manipulating these derivatives to eliminate constants effectively. The final goal is to express the relationship without the constants clearly defined.
bergausstein
Messages
191
Reaction score
0

Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
 
Physics news on Phys.org
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?
 
bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y= 0

- - - Updated - - -

bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y
 
MarkFL said:
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?

I can't find it. :(
 
bergausstein said:
I can't find it. :(

You need not search, you have been provided with the factors. (Tmi)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K