MHB Eliminating constants in a second derivative of a function

bergausstein
Messages
191
Reaction score
0

Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
 
Physics news on Phys.org
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?
 
bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y= 0

- - - Updated - - -

bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y
 
MarkFL said:
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?

I can't find it. :(
 
bergausstein said:
I can't find it. :(

You need not search, you have been provided with the factors. (Tmi)
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top