Eliminating constants in a second derivative of a function

  • Context: MHB 
  • Thread starter Thread starter bergausstein
  • Start date Start date
  • Tags Tags
    Constants Elimination
Click For Summary
SUMMARY

The discussion focuses on eliminating constants in the second derivative of the function \(y = c_1 e^{ax} \cos(bx) + c_2 e^{ax} \sin(bx)\). The derivatives \(y'\) and \(y''\) are calculated, leading to the equation \(y'' + 2ay' + (a^2 + b^2)y = 0\). The participants aim to find factors that will simplify the resulting equations to zero. The final forms of the derivatives are provided, showcasing the relationship between the constants and the derivatives.

PREREQUISITES
  • Understanding of differential equations
  • Knowledge of exponential and trigonometric functions
  • Familiarity with the product rule of differentiation
  • Ability to manipulate algebraic expressions and combine like terms
NEXT STEPS
  • Study the method of solving second-order linear differential equations
  • Learn about the characteristic equation associated with differential equations
  • Explore the application of the Wronskian in determining linear independence of solutions
  • Investigate the use of Laplace transforms in solving differential equations
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on differential equations, as well as educators teaching calculus and advanced mathematics concepts.

bergausstein
Messages
191
Reaction score
0

Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
 
Physics news on Phys.org
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?
 
bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y= 0

- - - Updated - - -

bergausstein said:
Eliminate the constants

$y=c_1 e^{ax}cosbx +c_2e^{ax}sinbx$

since there's two constants I took the derivative twice

$y'=c_1\left ( -e^{ax}b\sin{bx} + ae^{ax}\cos{bx}\right )+ c_2\left ( e^{ax}b\cos{bx} +ae^{ax}\sin{bx}\right )$

$y''=c_1\left [ \left ( -e^{ax}b^2\cos{bx}-ae^{ax}b\sin{bx}\right) + \left (-ae^{ax}b\sin{bx}+a^2e^{ax}\cos{bx} \right ) \right ]+c_2\left [ \left ( -e^{ax}b^2\sin{bx}+ae^{ax}b\cos{bx}\right )+\left ( ae^{ax}b\cos{bx}+a^2e^{ax}\sin{bx}\right ) \right ]$now I don't know what to do next. please help me!
Multiply y' by 2a, multiply y by a^2+ b^2 and add:
y''+ 2ay'+ (a^2+ b^2)y
 
MarkFL said:
Let's factor and combine like terms and line them up as follows:

$$y=c_1e^{ax}\cos(bx)+c_2e^{ax}\sin(bx)$$

$$y'=c_1e^{ax}\left(a\cos(bx)-b\sin(bx) \right)+c_2e^{ax}\left(b\cos(bx)+a\sin(bx) \right)$$

$$y''=c_1e^{ax}\left(\left(a^2-b^2 \right)\cos(bx)-2ab\sin(bx) \right)+c_2e^{ax}\left(2ab\cos(bx)+\left(a^2-b^2 \right)\sin(bx) \right)$$

Now, can you find two factors such that when you multiply the first and second equations by these factors, the resulting sum of the three equations is zero?

I can't find it. :(
 
bergausstein said:
I can't find it. :(

You need not search, you have been provided with the factors. (Tmi)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K