I Energies of bound state for delta function potential

Click For Summary
The discussion focuses on the energy states of a particle subjected to a delta function potential, as outlined in Griffiths' "Introduction to Quantum Mechanics." It raises questions about how a particle can assume a single energy value when this potential is applied and whether its energy changes if it initially possesses a different energy. The delta function potential is compared to the hydrogen atom's behavior, particularly regarding bound states and energy emission. Additionally, the conversation touches on the significance of the delta potential in scattering states and the challenge of defining multiple bound states in this framework. Understanding the relationship between the width and depth of the potential is crucial for grasping the system's behavior.
ErwinZumer
Messages
1
Reaction score
1
Hi
Let's consider a potential of the form
1695146975780.png

The Schrodinger equation reads
1695147036236.png

as shown in the book 'Introduction to Quantum mechanis' by D.J. Griffiths, Chaper 2 Section 5, the solution of the equation yields (only for bound state, which means E<0):
1695147197115.png

My question:
if i have one particle and i apply this potential on it, how does it take one value of energy?
another question is, if i have one paricle with some energy, E, before applying this potential, does the energy of the particle will change?
 
Physics news on Phys.org
ErwinZumer said:
Hi
Let's consider a potential of the form
View attachment 332220
The Schrodinger equation reads
View attachment 332222
as shown in the book 'Introduction to Quantum mechanis' by D.J. Griffiths, Chaper 2 Section 5, the solution of the equation yields (only for bound state, which means E<0):
View attachment 332223
My question:
if i have one particle and i apply this potential on it, how does it take one value of energy?
another question is, if i have one paricle with some energy, E, before applying this potential, does the energy of the particle will change?
There are parallels, of course with the hydrogen atom, where an electron may settle into a bound state around the nucleus by emitting a photon that carries away the excess energy. Does this happen for the delta function potential? Good question.

The physical significance of the delta potential is probably in the scattering states and the transmission and reflection coefficients.

There's more here to get you started if you want to investigate further:

https://en.wikipedia.org/wiki/Delta_potential
 
That delta function potential is like the limit of a finite square well, ##V(x) = -V_0## when ##|x|<L/2## and ##V(x) = 0## when ##|x|\geq L/2##, if you start making it more narrow by decreasing ##L## and increasing ##V_0## at the same time so that the product ##V_0 L## stays at constant value ##\alpha##.

It's probably difficult to explain in a pictorial way why this system has exactly one bound state in the limit where ##L## is very close to ##0## and ##V_0## is a very large number.

A more difficult problem would be to find out how much more quickly you would have to increase well depth ##V_0## compared to the rate of ##L## decrease so that after some minimum value of ##V_0## it would have exactly two bound states. But it's impossible to define a generalized function similar to ##\delta (x)## that would describe the high-##V_0## limit of this situation.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
972