I Entangled, mixed state with conditional entropy zero

greypilgrim
Messages
579
Reaction score
44
Hi.
The classical (Shannon) conditional entropy is never negative. It can be written as ##H(Y|X)=H(X,Y)-H(X)## which allows for a quantum generalization using von Neumann entropy. In the case of entangled states, it can become negative.

I guess it should be possible to construct an entangled, mixed (bipartite) state where ##H(Y|X)## is exactly zero (though I don't know how to exactly do that). Does this have a specific meaning?
 
Physics news on Phys.org
Conditional entropy in classical probability is always positive because the entropy of the total system is always greater than or equal to the entropy of its parts. This is no longer true in QM and it can be negative because you can have maximum knowledge of the whole system (it's in a pure state), but less than optimal knowledge of the parts (subsystems are in a mixed state). It vanishing is just the special case where the entropies happen to be equal, it has no additional special meaning.
 
  • Like
Likes Greg Bernhardt and vanhees71
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top