MHB Equation 2: Prove that ##x^2+2x\sqrt x+3x+2\sqrt x+1=0##

  • Thread starter Thread starter solakis1
  • Start date Start date
solakis1
Messages
407
Reaction score
0
I checked the following equation with Wolfram\Alpha and the answer was no real solution
How can we prove that?
$x^2+2x\sqrt x+3x+2\sqrt x+1=0$
 
Mathematics news on Phys.org
solakis said:
I checked the following equation with Wolfram\Alpha and the answer was no real solution
How can we prove that?
$x^2+2x\sqrt x+3x+2\sqrt x+1=0$
You pretty much are stuck with two choices: Ferrari's method or graphing. I'd choose graphing!

-Dan
 
$f(x) = x^2 + 2x\sqrt x + 3x + 2\sqrt x + 1 = (x + \sqrt x + 1)^2$, so if $f(x) = 0$ then $x + \sqrt x + 1 = 0$. That is a quadratic equation for $\sqrt x$, with solutions $\sqrt x = \frac12(-1 \pm i\sqrt3)$. If $\sqrt x$ is non-real then so is $x$. Therefore the equation $f(x) = 0$ has no real solutions.
 
[sp]Well, if $\sqrt{x}$ is not pure imaginary then x is complex, anyway.[/sp]

Nice catch!

-Dan
 
ha, ha so easy solution:mad:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
959
Replies
1
Views
2K
Replies
13
Views
2K
Back
Top