Equations Using Comma-Goto-Semicolon Rule in Curved Spacetime

  • Context: Undergrad 
  • Thread starter Thread starter Haorong Wu
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on the application of the comma-goto-semicolon rule in deriving wave equations for light beams in curved spacetime. Two approaches are presented, both starting from the Helmholtz equation in Minkowski spacetime. The first approach applies the paraxial approximation to yield a scalar wave equation, while the second approach directly applies the comma-goto-semicolon rule to the Helmholtz equation, leading to inconsistencies when specific metrics are applied. The second approach is deemed more accurate due to the symmetry of the Helmholtz equation, prompting questions about the conditions necessary for using the comma-goto-semicolon rule effectively.

PREREQUISITES
  • Understanding of the Helmholtz equation in Minkowski spacetime
  • Familiarity with the comma-goto-semicolon rule in differential geometry
  • Knowledge of covariant derivatives and their notation
  • Basic principles of curved spacetime physics
NEXT STEPS
  • Research the implications of the paraxial approximation in wave equations
  • Study the properties of the Helmholtz equation in different spacetime geometries
  • Explore the mathematical foundations of covariant derivatives and their applications
  • Investigate the role of curvature operators in general relativity
USEFUL FOR

Physicists, mathematicians, and researchers working in the fields of general relativity, quantum field theory, and differential geometry will benefit from this discussion.

Haorong Wu
Messages
419
Reaction score
90
TL;DR
What conditions should a physical equation satisfy so that the comma-goto-semicolon rule can be applied to it?
Recently, I am considering the wave equations of a light beam in curved spacetime. Here I have two approaches. Both start from the Helmholtz equation ##\psi^{,\mu}_{~~,\mu}=\eta^{\mu\nu}\psi_{,\mu,\nu}=0## in the Minkowski spacetime, and ##\psi## is assumed to be ##T(x,y,z)e^{ik(z-t)}##.

In the first approach, I could impose the paraxial approximation on the Helmholtz equation yielding the scalar wave equation ##2ik T_{,3}=\eta^{ij}T_{,i,j} ## where ##i## and ## j## run in the spatial coordinates. Then I write its counterpart in curved spacetime according to the comma-goto-semicolon rule yielding ##2ik T_{;3}=g^{ij}T_{;i;j} .##

In the other approach, I would first use the comma-goto-semicolon rule on the Helmholtz equation to have ##g^{\mu\nu}\psi_{;\mu;\nu}=0##. Then I express the covariant derivative by partial derivative. Along the process, the paraxial approximation is used to eliminate ##T_{,3,3}## term.

Now if I subscribe some metric to these two results, I will have inconsistent equations. In the second approach, ##g^{33}\psi_{;3;3}##, which does not appear in the first approach, will introduce some new terms. I think the second approach is correct since the Helmholtz equation is more symmetric than the scalar wave equation. This makes me wonder what condition should a equation satisfy so that I could use the comma-goto-semicolon rule to turn it into a covariant form?

BTW, when I write covariant derivative, should I write ##T(x,y,z)_{,i}## or ##T_{,i}(x,y,z)##? Also, if there are two covariant derivatives, should I write ##T_{;i;j}## or ##T_{;ij}##?

Thanks!
 
Physics news on Phys.org
Haorong Wu said:
Also, if there are two covariant derivatives, should I write T;i;j or T;ij?
I observe ##:i:j## is used e.g. ##T_{:i:j}## in Dirac's text I have.
 
  • Like
Likes   Reactions: Haorong Wu
The "comma-to-semicolon"/##\partial##-to-##\nabla## rule is not always clear-cut. To give another example, consider the Maxwell equation ##\partial_{\mu} F^{\mu \nu} = 4\pi j^{\nu}##, which in terms of the vector potential reads\begin{align*}
\partial_{\mu} \partial^{\mu} A^{\nu} - \partial_{\mu} \partial^{\nu} A^{\mu} &= 4\pi j^{\nu} \ \ \ (\dagger) \\ \overset{\mathrm{curved \ spacetime}}{\implies} \nabla_{\mu} \nabla^{\mu} A^{\nu} - \nabla_{\mu} \nabla^{\nu} A^{\mu} &= 4\pi j^{\nu} \ \ \ (\mathrm{a})
\end{align*}On the other hand, since ##\partial_{\mu} \partial^{\nu} = \partial^{\nu} \partial_{\mu}## then one can re-write ##(\dagger)## as\begin{align*}
\partial_{\mu} \partial^{\mu} A^{\nu} - \partial^{\nu} \partial_{\mu} A^{\mu} &= 4\pi j^{\nu} \\ \overset{\mathrm{curved \ spacetime}}{\implies} \nabla_{\mu} \nabla^{\mu} A^{\nu} - \nabla^{\nu} \nabla_{\mu} A^{\mu} &= 4\pi j^{\nu} \ \ \ (\mathrm{b})
\end{align*}If one defines a "curvature" operator ##\nabla_{\mu} \nabla^{\nu} - \nabla^{\nu} \nabla_{\mu} \equiv {R^{\nu}}_{\mu}## then one can re-write this last equation as\begin{align*}
\nabla_{\mu} \nabla^{\mu} A^{\nu} - \nabla_{\mu} \nabla^{\nu} A^{\mu} + {R^{\nu}}_{\mu} A^{\mu} &= 4\pi j^{\nu} \ \ \ (\mathrm{c})
\end{align*}The equations ##(\mathrm{a})## and ##(\mathrm{c})## differ by this term ##{R^{\nu}}_{\mu} A^{\mu}##.
 
  • Like
Likes   Reactions: Haorong Wu and vanhees71

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
890
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K