Proving R is an Equivalence Relation: Steps and Explanation

ragnes
Messages
4
Reaction score
0
1. Let R be a relation on X that satisfies
a) for all a in X, (a,a) is in R
b) for a,b,c in X, if (a,b) and (b,c) in R, then (c,a) in R.
Show that R is an equivalence relation.




2. In order for R to be an equivalence relation, the following must be true:
1) for all a in X, (a,a) is in R
2) for a,b in X, if (a,b) is in R, then (b,a) is also in R
3) for a,b,c in X, if (a,b) and (b,c) is in R, then (a,c) is in R.




3. The first part is given by the definition of an equivalence relation. I'm stuck on proving part b. Help please!
 
Physics news on Phys.org
how about considering (a,b) and (b,b) for the second part?
 
lanedance said:
how about considering (a,b) and (b,b) for the second part?

Proof by contradiction, using lanedance's example.

Or consider (b,c) and (c,c).
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K