Errors and Numerical Integration

Click For Summary
When calculating the area under an experimental peak using numerical integration with errors in the data points, it's crucial to assess how these errors affect the integrated area. One method involves adding the errors to the data points to estimate a maximum area, then calculating the error based on the difference from the actual area, adjusted by a factor of 0.687 for standard deviation. Alternatively, integrating the error bars directly is also suggested. The discussion highlights that if sample errors are random, the standard deviation of the total area scales with the square root of the number of samples, while systematic errors scale linearly. Ultimately, the approach to error estimation depends on whether the errors are independent or correlated.
bobjones21
Messages
1
Reaction score
0
Wasn't sure where to ask this but here goes:

Suppose one needs to work out the area under an experimental peak using numerical integration and every data point has an error in y. How do you go about providing a sensbile error on the integrated area?

My current thinking is that the error in numerical integration is much less than the error on the data points, and the error can be estimated by either:

Adding the errors to the data points and numerically integrating a max area, and then take 2*(maxarea - area) as the error but since it is unlikely all data points are at the maxium error multiply this by 0.687 (1 standard deviation).

Alternatively can you just numerically integrate the error bars?

Anyone know what the proper way of doing this is?
 
Physics news on Phys.org
bobjones21 said:
Wasn't sure where to ask this but here goes:

Suppose one needs to work out the area under an experimental peak using numerical integration and every data point has an error in y. How do you go about providing a sensbile error on the integrated area?

My current thinking is that the error in numerical integration is much less than the error on the data points, and the error can be estimated by either:

Adding the errors to the data points and numerically integrating a max area, and then take 2*(maxarea - area) as the error but since it is unlikely all data points are at the maxium error multiply this by 0.687 (1 standard deviation).

Alternatively can you just numerically integrate the error bars?

Anyone know what the proper way of doing this is?

If the individual sample errors are random then the standard deviation of the sum of n samples goes as sqrt(n) times the standard deviation of a single sample.

If the individual sample errors are systematic then the standard deviation of the sum of n samples goes as n times the standard deviation of a single sample.

I fail to see a motivation for multiplying by 0.687.
 
It's often easier to work with variances than standard deviations. If the errors are independent, you add up all the variances to get the variance in the integrated area. If the errors are not independent, it's tricky.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
28
Views
4K