POTW Estimate of a Principal Value Integral

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
For ##x\in \mathbb{R}##, let $$A(x) = \frac{1}{2\pi}\, P.V. \int_{-\infty}^\infty e^{i(xy + \frac{y^3}{3})}\, dy$$ Show that the integral defining ##A(x)## exists and ##|A(x)| \le M(1 + |x|)^{-1/4}## for some numerical constant ##M##.
 
Last edited:
Physics news on Phys.org
I assume by A(x) you mean \operatorname{Ai}(x) or vice-versa.
 
I meant ##A(x)##, sorry.
 

Similar threads

Replies
2
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
Replies
4
Views
2K
Replies
1
Views
2K
Replies
8
Views
2K
Replies
2
Views
3K
Replies
1
Views
2K
Back
Top