Estimate of a Principal Value Integral

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Estimate Integral
Click For Summary
SUMMARY

The discussion centers on the principal value integral defined as $$A(x) = \frac{1}{2\pi}\, P.V. \int_{-\infty}^\infty e^{i(xy + \frac{y^3}{3})}\, dy$$. It establishes that the integral defining ##A(x)## exists and provides the bound ##|A(x)| \le M(1 + |x|)^{-1/4}## for some numerical constant ##M##. The conversation clarifies the relationship between ##A(x)## and the Airy function ##\operatorname{Ai}(x)##, confirming that they are indeed related.

PREREQUISITES
  • Understanding of principal value integrals
  • Familiarity with complex analysis
  • Knowledge of asymptotic analysis
  • Basic concepts of Airy functions
NEXT STEPS
  • Study the properties of principal value integrals
  • Explore the derivation and applications of the Airy function ##\operatorname{Ai}(x)##
  • Research asymptotic behavior of integrals in complex analysis
  • Learn about the method of stationary phase in integral estimation
USEFUL FOR

Mathematicians, physicists, and students engaged in advanced calculus, particularly those focusing on integral transforms and asymptotic analysis.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
For ##x\in \mathbb{R}##, let $$A(x) = \frac{1}{2\pi}\, P.V. \int_{-\infty}^\infty e^{i(xy + \frac{y^3}{3})}\, dy$$ Show that the integral defining ##A(x)## exists and ##|A(x)| \le M(1 + |x|)^{-1/4}## for some numerical constant ##M##.
 
Last edited:
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
I assume by A(x) you mean \operatorname{Ai}(x) or vice-versa.
 
I meant ##A(x)##, sorry.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
696