Euler–Mascheroni constant How to Solution

  • Context: MHB 
  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Constant
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$\int_{0}^{\infty} e^{-x}\ln(x)\,dx$$ and its relation to the Euler–Mascheroni constant $$\gamma$$. Participants explore various methods of integration, including integration by parts, and discuss the implications of their findings.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents a detailed solution using integration by parts and series expansion, leading to an expression involving limits as $$x$$ approaches 0 and infinity.
  • Another participant introduces a sequence of integrals $$A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$$ and derives a recursive relationship to find $$A_0$$.
  • There is a suggestion that the limit definition of $$\gamma$$ can be related to the integral, prompting further exploration of integration techniques.
  • One participant inquires about the method used by another, indicating a desire for clarification on the integration technique applied.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the evaluation of the integral or the methods used. Multiple approaches and interpretations are presented, with some participants seeking clarification on specific techniques.

Contextual Notes

Some participants express uncertainty about the naming of the integration method and the validity of the steps taken in their calculations, indicating potential limitations in their approaches.

Who May Find This Useful

Readers interested in advanced integration techniques, the Euler–Mascheroni constant, or mathematical analysis may find the discussion relevant.

Another1
Messages
39
Reaction score
0
Why $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ when $$\gamma$$ is Euler–Mascheroni constant

My solution is ...

$$ u = ln(x) $$ and $$ du = \frac{dx}{x}$$
$$ dv = e^{-x} dx$$ and $$ v = -e^{-x}$$

so... $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx$$

when $$e^{-x}=\sum_{n=0}^{\infty}\frac{(-x)^n}{n!}=\sum_{n=0}^{\infty}\frac{(-1)^n(x)^n}{n!}$$
$$\frac{e^{-x}}{x}=\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+...$$so...$$-ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = -ln(x)e^{-x}+\int_{0}^{\infty}[\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+... ]\,dx$$
$$= -ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+\lim_{{x}\to{0}}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+0$$

and
$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{\infty}}-ln(x)e^{-x}+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

finally...
$$\int_{0}^{\infty} e^{-x}ln(x)\,dx =\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

How to solution $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ ??

some time why someone integral $$\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = E{(-x)}_{1}$$ as $$E{(0)}_{1}=\infty$$
 
Last edited:
Physics news on Phys.org
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,

\begin{align}A_n &= x^ne^{-x}(x\ln x - x)\bigg|_{x = 0}^\infty - \int_0^\infty (x\ln x - x)\frac{d}{dx}(x^ne^{-x})\, dx\\
&= -\int_0^\infty (nx^{n-1}e^{-x} - x^ne^{-x})(x\ln x - x)\, dx\\
&= -\int_0^\infty (nx^n e^{-x}\ln x - x^{n+1}e^{-x}\ln x - nx^ne^{-x} + x^{n+1}e^{-x})\, dx\\
&= -nA_n + A_{n+1} +n\cdot n! - (n+1)!\\
&= -nA_n + A_{n+1} - n! \end{align}

Thus $(1 + n)A_n = A_{n+1} - n!$, or

$$\frac{A_n}{n!} = \frac{A_{n+1}}{(n+1)!} - \frac{1}{n+1}$$

Consequently,

$$A_0 = \frac{A_n}{n!} -1 - \frac{1}{2} - \frac{1}{3} - \cdots - \frac{1}{n}$$

Alternatively,

$$A_0 = \left(\frac{A_n}{n!} - \ln n\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right)$$

Since, by definition,

$$\lim_{n\to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right) = \gamma$$

It suffices to show

$$\lim_{n\to \infty} \frac{A_n}{n!} - \ln n = 0$$

For this it should be useful to write

$$\ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln n\, dx$$

so that we can write

$$\frac{A_n}{n!} - \ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln\left(\frac{x}{n}\right)\, dx$$
 
Thank you very much Euge
Euge said:
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,
if you do not mind
Can you tell me
What is this method?
 
I'm not sure if there is a name for it. This is just something I thought of. My thinking was, to relate the integral to the limit definition of $\gamma$, I ought to perform several integration by parts 'the right way.'
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K