MHB Euler–Mascheroni constant How to Solution

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Constant
Another1
Messages
39
Reaction score
0
Why $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ when $$\gamma$$ is Euler–Mascheroni constant

My solution is ...

$$ u = ln(x) $$ and $$ du = \frac{dx}{x}$$
$$ dv = e^{-x} dx$$ and $$ v = -e^{-x}$$

so... $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx$$

when $$e^{-x}=\sum_{n=0}^{\infty}\frac{(-x)^n}{n!}=\sum_{n=0}^{\infty}\frac{(-1)^n(x)^n}{n!}$$
$$\frac{e^{-x}}{x}=\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+...$$so...$$-ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = -ln(x)e^{-x}+\int_{0}^{\infty}[\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+... ]\,dx$$
$$= -ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+\lim_{{x}\to{0}}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+0$$

and
$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{\infty}}-ln(x)e^{-x}+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

finally...
$$\int_{0}^{\infty} e^{-x}ln(x)\,dx =\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

How to solution $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ ??

some time why someone integral $$\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = E{(-x)}_{1}$$ as $$E{(0)}_{1}=\infty$$
 
Last edited:
Physics news on Phys.org
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,

\begin{align}A_n &= x^ne^{-x}(x\ln x - x)\bigg|_{x = 0}^\infty - \int_0^\infty (x\ln x - x)\frac{d}{dx}(x^ne^{-x})\, dx\\
&= -\int_0^\infty (nx^{n-1}e^{-x} - x^ne^{-x})(x\ln x - x)\, dx\\
&= -\int_0^\infty (nx^n e^{-x}\ln x - x^{n+1}e^{-x}\ln x - nx^ne^{-x} + x^{n+1}e^{-x})\, dx\\
&= -nA_n + A_{n+1} +n\cdot n! - (n+1)!\\
&= -nA_n + A_{n+1} - n! \end{align}

Thus $(1 + n)A_n = A_{n+1} - n!$, or

$$\frac{A_n}{n!} = \frac{A_{n+1}}{(n+1)!} - \frac{1}{n+1}$$

Consequently,

$$A_0 = \frac{A_n}{n!} -1 - \frac{1}{2} - \frac{1}{3} - \cdots - \frac{1}{n}$$

Alternatively,

$$A_0 = \left(\frac{A_n}{n!} - \ln n\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right)$$

Since, by definition,

$$\lim_{n\to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right) = \gamma$$

It suffices to show

$$\lim_{n\to \infty} \frac{A_n}{n!} - \ln n = 0$$

For this it should be useful to write

$$\ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln n\, dx$$

so that we can write

$$\frac{A_n}{n!} - \ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln\left(\frac{x}{n}\right)\, dx$$
 
Thank you very much Euge
Euge said:
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,
if you do not mind
Can you tell me
What is this method?
 
I'm not sure if there is a name for it. This is just something I thought of. My thinking was, to relate the integral to the limit definition of $\gamma$, I ought to perform several integration by parts 'the right way.'
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top