MHB Euler–Mascheroni constant How to Solution

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Constant
Click For Summary
SUMMARY

The integral $$\int_{0}^{\infty} e^{-x}\ln(x)\,dx$$ evaluates to the negative of the Euler–Mascheroni constant, $$-\gamma$$. The solution involves integration by parts, where $$u = \ln(x)$$ and $$dv = e^{-x}dx$$, leading to a series representation that converges to the limit defining $$\gamma$$. The discussion also highlights the relationship between the integral and the limit definition of $$\gamma$$ through the manipulation of series and integrals.

PREREQUISITES
  • Understanding of integration by parts
  • Familiarity with the Euler–Mascheroni constant ($$\gamma$$)
  • Knowledge of series expansions, particularly Taylor series
  • Basic concepts of improper integrals
NEXT STEPS
  • Study integration techniques, specifically integration by parts
  • Explore the properties and applications of the Euler–Mascheroni constant ($$\gamma$$)
  • Learn about series convergence and manipulation in calculus
  • Investigate improper integrals and their evaluations
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and the properties of special constants like the Euler–Mascheroni constant.

Another1
Messages
39
Reaction score
0
Why $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ when $$\gamma$$ is Euler–Mascheroni constant

My solution is ...

$$ u = ln(x) $$ and $$ du = \frac{dx}{x}$$
$$ dv = e^{-x} dx$$ and $$ v = -e^{-x}$$

so... $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx$$

when $$e^{-x}=\sum_{n=0}^{\infty}\frac{(-x)^n}{n!}=\sum_{n=0}^{\infty}\frac{(-1)^n(x)^n}{n!}$$
$$\frac{e^{-x}}{x}=\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+...$$so...$$-ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = -ln(x)e^{-x}+\int_{0}^{\infty}[\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+... ]\,dx$$
$$= -ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+\lim_{{x}\to{0}}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}$$

$$\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+0$$

and
$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{\infty}}-ln(x)e^{-x}+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

$$\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

finally...
$$\int_{0}^{\infty} e^{-x}ln(x)\,dx =\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}$$

How to solution $$\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma $$ ??

some time why someone integral $$\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = E{(-x)}_{1}$$ as $$E{(0)}_{1}=\infty$$
 
Last edited:
Physics news on Phys.org
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,

\begin{align}A_n &= x^ne^{-x}(x\ln x - x)\bigg|_{x = 0}^\infty - \int_0^\infty (x\ln x - x)\frac{d}{dx}(x^ne^{-x})\, dx\\
&= -\int_0^\infty (nx^{n-1}e^{-x} - x^ne^{-x})(x\ln x - x)\, dx\\
&= -\int_0^\infty (nx^n e^{-x}\ln x - x^{n+1}e^{-x}\ln x - nx^ne^{-x} + x^{n+1}e^{-x})\, dx\\
&= -nA_n + A_{n+1} +n\cdot n! - (n+1)!\\
&= -nA_n + A_{n+1} - n! \end{align}

Thus $(1 + n)A_n = A_{n+1} - n!$, or

$$\frac{A_n}{n!} = \frac{A_{n+1}}{(n+1)!} - \frac{1}{n+1}$$

Consequently,

$$A_0 = \frac{A_n}{n!} -1 - \frac{1}{2} - \frac{1}{3} - \cdots - \frac{1}{n}$$

Alternatively,

$$A_0 = \left(\frac{A_n}{n!} - \ln n\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right)$$

Since, by definition,

$$\lim_{n\to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln n\right) = \gamma$$

It suffices to show

$$\lim_{n\to \infty} \frac{A_n}{n!} - \ln n = 0$$

For this it should be useful to write

$$\ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln n\, dx$$

so that we can write

$$\frac{A_n}{n!} - \ln n = \int_0^\infty \frac{x^n}{n!}e^{-x}\ln\left(\frac{x}{n}\right)\, dx$$
 
Thank you very much Euge
Euge said:
Hi Another,

Let $A_n := \int_0^\infty x^ne^{-x}\ln(x)\, dx$ for $n = 0,1,2,3,\ldots$. We desire to find $A_0$.

By integration by parts,
if you do not mind
Can you tell me
What is this method?
 
I'm not sure if there is a name for it. This is just something I thought of. My thinking was, to relate the integral to the limit definition of $\gamma$, I ought to perform several integration by parts 'the right way.'
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K