Evaluate 80t - 20s + 60r - 50q + 70p

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on evaluating the expression \(80t - 20s + 60r - 50q + 70p\) based on a system of simultaneous equations involving the variables \(p, q, r, s, t\). The equations are transformed into matrix form, allowing for the application of linear algebra techniques. The final values derived are \(p = \frac{1}{2}\), \(q = 8\), \(r = -4\), \(s = -\frac{1}{2}\), and \(t = 16\), leading to the computed result of \(685\). An important correction is noted regarding the order of variables \(q\) and \(r\), which affects the final calculation.

PREREQUISITES
  • Understanding of linear algebra concepts, particularly matrix operations.
  • Familiarity with simultaneous equations and their solutions.
  • Knowledge of matrix inversion techniques.
  • Ability to manipulate algebraic expressions involving multiple variables.
NEXT STEPS
  • Study matrix representation of linear equations using tools like MATLAB or Python's NumPy.
  • Learn about matrix inversion and its applications in solving systems of equations.
  • Explore the properties of determinants and their role in linear algebra.
  • Investigate error analysis in mathematical computations to understand the impact of variable order on results.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone involved in solving complex systems of equations will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given a system of simultaneous equations below:

$pqrs+pqrt+pqst+prst=-264$

$pqrs+pqrt+prst+qrst=-24$

$pqrs+pqrt+pqst+qrst=24$

$pqrs+pqst+prst+qrst=248$

$pqrt+pqst+prst+qrst=-16$

Evaluate $80t-20s+60r-50q+70p$.
 
Mathematics news on Phys.org
Re: Evaluate 80t-20s+60r-50q+70p

[sp]I think that the best way to do this is to use some linear algebra. Divide the equations by $pqrst$ and write them in matrix form: $$\begin{bmatrix}0&1&1&1&1 \\ 1&0&1&1&1 \\ 1&1&0&1&1 \\ 1&1&1&0&1 \\ 1&1&1&1&0 \end{bmatrix} \begin{bmatrix}p^{-1} \\q^{-1} \\r^{-1} \\s^{-1} \\t^{-1} \end{bmatrix} = \frac1{pqrst}\begin{bmatrix}-264 \\ -24 \\ 24 \\ 248 \\ -16 \end{bmatrix}.$$ That $5\times5$ matrix is equal to $5P-I$, where $P$ is the matrix of the projection onto the 1-dimensional subspace spanned by the unit vector $\frac1{\sqrt5}(1,1,1,1,1)$. The inverse of that matrix is $\tfrac54P-I = \dfrac14 \begin{bmatrix}-3&1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \\ 1&1&1&1&-3 \end{bmatrix}.$ It follows that $$\begin{bmatrix}p^{-1} \\q^{-1} \\r^{-1} \\s^{-1} \\t^{-1} \end{bmatrix} = \frac1{4pqrst} \begin{bmatrix}-3&1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \\ 1&1&1&1&-3 \end{bmatrix} \begin{bmatrix}-264 \\ -24 \\ 24 \\ 248 \\ -16 \end{bmatrix} = \frac1{pqrst}\begin{bmatrix}256 \\ 16 \\ -32 \\ -256 \\ 8 \end{bmatrix} = \frac1{pqrst}\begin{bmatrix}2^8 \\ 2^4 \\ -2^5 \\ -2^8 \\ 2^3 \end{bmatrix}.$$ If $\Pi = pqrst$ then $p^{-1} = \dfrac{2^8}{\Pi}$, $q^{-1} = \dfrac{2^4}{\Pi}$, $r^{-1} = -\dfrac{2^5}{\Pi}$, $s^{-1} = -\dfrac{2^8}{\Pi}$, $t^{-1} = \dfrac{2^3}{\Pi}.$ Multiply those five equations together to see that $\dfrac1{\Pi} = \dfrac{2^{28}}{\Pi^5}$, from which $\Pi^4 = 2^{28}$ and so $\Pi = 2^7$.

Thus $p = 1/2$, $q = 8$, $r = -4$, $s = -1/2$, $t = 16.$ If I have done the arithmetic correctly, then $80t-20s+60r-50q+70p = 685.$[/sp]

Edit. The left sides of the original equations each contain four of the five products $pqrs$, $pqrt$, $pqst$, $prst$, $qrst$. When I first read the problem, I saw that the first equation uses the four products that include $p$, and the last equation uses the four products that include $t$. I assumed, without stopping to read everything carefully, that if the first equation was a "$p$" equation and the last equation was a "$t$" equation, then the intermediate equations would be the "$q$", "$r$", "$s$" equations, in that order. But anemone points out to me in a PM that the order of the "$q$" and "$r$" equations is reversed. This means that my values for $q$ and $r$ should be exchanged, and that obviously alters the result of the final calculation.
 
Last edited:
Re: Evaluate 80t-20s+60r-50q+70p

Thanks for participating, Opalg! Even though you have read the problem wrongly, I am glad to learn that there is another way (which is different than mine) to approach the problem.:o

My solution:
Divide all given equations by $pqrst$ we get:

$\dfrac{pqrs}{pqrst}+\dfrac{pqrt}{pqrst}+\dfrac{pqst}{pqrst}+\dfrac{prst}{pqrst}=-\dfrac{264}{pqrst}\rightarrow\;\dfrac{1}{t}+\dfrac{1}{s}+\dfrac{1}{r}+\dfrac{1}{q}=-\dfrac{264}{pqrst}-(1)$

$\dfrac{pqrs}{pqrst}+\dfrac{pqrt}{pqrst}+\dfrac{prst}{pqrst}+\dfrac{qrst}{pqrst}=-\dfrac{24}{pqrst} \rightarrow\;\dfrac{1}{t}+\dfrac{1}{s}+\dfrac{1}{q}+\dfrac{1}{p}=-\dfrac{24}{pqrst}-(2)$

$\dfrac{pqrs}{pqrst}+\dfrac{pqrt}{pqrst}+\dfrac{pqst}{pqrst}+\dfrac{qrst}{pqrst}=\dfrac{24}{pqrst} \rightarrow\;\dfrac{1}{t}+\dfrac{1}{s}+\dfrac{1}{r}+\dfrac{1}{p}=\dfrac{24}{pqrst}-(3)$

$\dfrac{pqrs}{pqrst}+\dfrac{pqst}{pqrst}+\dfrac{prst}{pqrst}+\dfrac{qrst}{pqrst}=\dfrac{248}{pqrst} \rightarrow\;\dfrac{1}{t}+\dfrac{1}{r}+\dfrac{1}{q}+\dfrac{1}{p}=\dfrac{248}{pqrst}-(4)$

$\dfrac{pqrt}{pqrst}+\dfrac{pqst}{pqrst}+\dfrac{prst}{pqrst}+\dfrac{qrst}{pqrst}=-\dfrac{16}{pqrst}\rightarrow\;\dfrac{1}{s}+\dfrac{1}{r}+\dfrac{1}{q}+\dfrac{1}{p}=-\dfrac{16}{pqrst}-(5)$

Equation (2) $-$ Equation (1):
$\dfrac{1}{p}-\dfrac{1}{r}=\dfrac{240}{pqrst}-(6)$

Equation (3) $-$ Equation (2):
$\dfrac{1}{r}-\dfrac{1}{q}=\dfrac{48}{pqrst}-(7)$

$\therefore \dfrac{1}{p}-\dfrac{1}{q}=\dfrac{288}{pqrst}--(*)$

Equation (4) $+$ Equation (5):
$\dfrac{1}{t}+\dfrac{1}{s}+2\left(\dfrac{1}{r}+ \dfrac{1}{q}+ \dfrac{1}{p} \right)=\dfrac{232}{pqrst}-(8)$

Equation (7) $-$ Equation (3):
$2\left(\dfrac{1}{q}\right)+ \dfrac{1}{r}+ \dfrac{1}{p}=\dfrac{208}{pqrst}-(9)$

Equation (8) $-$ Equation (6):
$3\left(\dfrac{1}{q}\right)+ \dfrac{1}{p}=\dfrac{160}{pqrst}-(**)$

Solving the equations (*) and (**) simultaneously we get:
$\dfrac{1}{q}=-\dfrac{32}{pqrst},\dfrac{1}{p}=\dfrac{256}{pqrst}, \dfrac{1}{r}=\dfrac{16}{pqrst}, \dfrac{1}{s}=-\dfrac{256}{pqrst}, \dfrac{1}{t}=\dfrac{8}{pqrst}$

Therefore, if we multiply these five equations together, we get
$\dfrac{1}{pqrst}=\dfrac{2^{28}}{(pqrst)^5}$

$\therefore pqrst=2^7$ or $\dfrac{1}{q}=-\dfrac{1}{4},\dfrac{1}{p}=2, \dfrac{1}{r}=\dfrac{1}{8}, \dfrac{1}{s}=-2, \dfrac{1}{t}=\dfrac{1}{16}$.

Hence $80t-20s+60r-50q+70p=80(16)-20(-\dfrac{1}{2})+60(8)-50(-4)+70(\dfrac{1}{2})=2005$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K