MHB Evaluate Finite Summation Expression

  • Thread starter Thread starter bincy
  • Start date Start date
  • Tags Tags
    Finite Summation
Click For Summary
The discussion focuses on evaluating the finite summation expression \sum_{i=0}^{N} \binom{N}{i} \left(-1\right)^{i}\left(\frac{1}{2+i}\right)^{k}. Participants suggest starting by writing out the first and last terms to gain insight into the evaluation process. A potential method for finding an explicit expression involves using the Noerdlund-Rice Integral, which connects the sum to a complex integral. The integral formulation requires careful selection of the function and path, indicating a complex evaluation process. Overall, the conversation highlights the mathematical intricacies involved in solving the summation.
bincy
Messages
38
Reaction score
0
How to evaluate the following expression?[math] \sum_{i=0}^{N} \binom{N}{i} \left(-1\right)^{i}\left(\frac{1}{2+i}\right)^{k} [/math]
regards,
Bincy
 
Physics news on Phys.org
bincybn said:
How to evaluate the following expression?[math] \sum_{i=0}^{N} \binom{N}{i} \left(-1\right)^{i}\left(\frac{1}{2+i}\right)^{k} [/math]
regards,
Bincy

Have you tried writing out the first few terms and the last 2 terms?
 
But I didn't get the ans.
 
bincybn said:
How to evaluate the following expression?[math] \sum_{i=0}^{N} \binom{N}{i} \left(-1\right)^{i}\left(\frac{1}{2+i}\right)^{k} [/math]

The explicit expression [if it exists...] of the finite sum may be [probably...] found using the so called 'Noerdlund- Rice Integral'...

$\displaystyle \sum_{j=\alpha}^{n} \binom{n}{j}\ (-1)^{j} f(j)= (-1)^{n} \frac{n!}{2\ \pi\ i}\ \int_{\gamma} \frac{f(z)}{z\ (z-1)\ (z-2)...(z-n)}\ dz$ (1)

... setting $\alpha=0$, $\displaystyle f(z)=\frac{1}{(2+z)^{k}}$ and with proper choice of the path $\gamma$. The details are quite complex and require more work...

Kind regards

$\chi$ $\sigma$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
13
Views
2K
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
2K