MHB Evaluate logarithm of a number

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Logarithm
Click For Summary
The discussion focuses on evaluating $\lfloor \log_x 7^{100} \rfloor$ using given logarithmic bounds for 2, 3, and 5. Through linear interpolation, the participants derive the bounds for $\log_x 49$, which leads to the conclusion that $0.9 < \log_x 49 < 0.914$. Since $49 = 7^2$, it follows that $0.45 < \log_x 7 < 0.457$. Ultimately, this results in the conclusion that $45 < \log_x 7^{100} < 45.9$, confirming that $\lfloor \log_x 7^{100} \rfloor = 45$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
 
Last edited:
Mathematics news on Phys.org
By brute force, we see that $x=73$ satisfy all of the inequalities, hence,
$$\lfloor\log_x{7^{100}}\rfloor$$
$$=\lfloor100\log_{73}{7}\rfloor$$
$$=45$$
 
anemone said:
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
$0.470<\log_x 7.5=\log_x \dfrac {3\times 5}{2}=\log_x 3+\log_x 5 -\log_x 2 <0.471$
now I will use linear interpolation :
let:$y=\log_x 7$
$\dfrac {\log_x {7.5 -y}}{7.5-7}\approx \dfrac {\log_x {7.5 -\log _x 5}}{7.5-5}$
$ y \approx 0.453$
$\therefore \lfloor \log_x 7^{100} \rfloor=45$
 
Last edited:
I t seemed not easy to get $\log_x 7,\, directly \,\, from ,\log _x 2, \log_x 3, and \log _x 5$
instead I get $\log_x 7.5$
so I use the method of linear interpolation
 
Last edited:
anemone said:
Given that

$0.375<\log_x 5<0.376$

$0.256<\log_x 3<0.257$

$0.161<\log_x 2<0.162$

evaluate $\lfloor \log_x 7^{100} \rfloor$.
[sp]$\log_x 48 = 4\log_x2 + \log_x3 >4\times0.161 + 0.256 = 0.9$.

$\log_x50 = \log_x2 + 2\log_x5 < 0.162 + 2\times 0.376 = 0.914$.

Therefore $0.9 < \log_x49 < 0.914$. But $49 = 7^2$, so $\log_x7 = \frac12\log_x49$ and $0.45 < \log_x7 < 0.457$. Finally, $45 < \log_x 7^{100} < 45.9$ and so $\lfloor \log_x 7^{100} \rfloor = 45$.[/sp]
 
Last edited:
Thank you all for participating and yes, 45 is the correct answer!:)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K