MHB Evaluate the integral $\displaystyle \int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
The integral $\int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$ can be evaluated using the substitution $x = \tan(\theta)$, leading to the result expressed in terms of Gamma functions. The solution involves recognizing the integral as a form related to the Beta function, which can be transformed into Gamma functions. The final result is given by $\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}$. This method highlights the relationship between trigonometric substitutions and Gamma functions in evaluating improper integrals. The discussion emphasizes the importance of these mathematical tools in solving complex integrals.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Evaluate the integral $\displaystyle \int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$. Express your answer using Gamma functions, where
$$\Gamma(x) :=\int_{0}^{\infty}t^{x-1}e^{-t} \, dt.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 282 - Sep 25, 2017

No one answered this week’s problem. You can read my solution below.
Let $I(\alpha)$ represent the integral. By the trig substitution $x = \tan \theta$, $I(\alpha)$ becomes $\int_0^{\pi/2} \cos^{\alpha - 2}(\theta)\, d\theta$. Multiplying $I(\alpha)$ by $\Gamma(\alpha/2)$ yields the double integral

$$\int_0^\infty \int_0^{\frac{\pi}{2}} r^{\frac{\alpha}{2}-1}e^{-r}\cos^{\alpha-2}(\theta)\, d\theta\, dr$$

which can also be written

$$\int_0^\infty \int_0^{\frac{\pi}{2}} e^{-r\cos^2(\theta)} e^{-r\sin^2(\theta)} (r\cos^2(\theta))^{\frac{\alpha-3}{2}} (r\sin^2(\theta))^{-\frac{1}{2}} r\cos(\theta)\sin(\theta)\, d\theta\, dr$$

Letting $x = r\cos^2(\theta)$ and $y = r\sin^2(\theta)$, the double integral is transformed to

$$0.5 \int_0^\infty \int_0^\infty e^{-x}e^{-y} x^{\frac{\alpha-3}{2}} y^{-\frac{1}{2}}\, dx\, dy$$

which is the same as

$$0.5 \int_0^\infty e^{-x} x^{\frac{\alpha-3}{2}}\, dx \int_0^\infty e^{-y} y^{-\frac{1}{2}}\, dy$$

The integral with respect to $x$ is $\Gamma((\alpha-1)/2)$, and using the $u$-substitution $u = \sqrt{y}$, the integral with respect to $y$ is the same as

$$2\int_0^\infty e^{-u^2}\, du = \int_{-\infty}^\infty e^{-u^2}\, du = \sqrt{\pi}$$

In summary,

$$\Gamma\left(\frac{\alpha}{2}\right)I(\alpha) = 0.5\sqrt{\pi}\,\Gamma\left(\frac{\alpha-1}{2}\right)$$

Dividing both sides by $\Gamma(\alpha/2)$ results in

$$I(\alpha) = \frac{0.5\sqrt{\pi}\,\Gamma\left(\frac{\alpha-1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}$$