Evaluate the integral $\displaystyle \int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The integral $\displaystyle \int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$ evaluates to $\frac{\sqrt{\pi}}{2} \cdot \frac{1}{\sin(\frac{\alpha \pi}{2})}$, utilizing the properties of the Gamma function. This result is derived from the substitution and transformation techniques involving the Gamma function, specifically $\Gamma(x) :=\int_{0}^{\infty}t^{x-1}e^{-t} \, dt$. The discussion emphasizes the importance of understanding the relationship between integrals and Gamma functions in advanced calculus.

PREREQUISITES
  • Understanding of integral calculus, particularly improper integrals.
  • Familiarity with Gamma functions and their properties.
  • Knowledge of substitution techniques in integration.
  • Basic understanding of trigonometric functions and their applications in calculus.
NEXT STEPS
  • Study the properties of the Gamma function in detail.
  • Learn about integral transformations and their applications in calculus.
  • Explore advanced techniques for evaluating improper integrals.
  • Investigate the relationship between trigonometric functions and integrals involving powers.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral evaluation techniques, particularly those involving Gamma functions and improper integrals.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Evaluate the integral $\displaystyle \int_0^{\infty}\frac{dx}{(1+x^2)^{\alpha/2}}$ for $\alpha>1$. Express your answer using Gamma functions, where
$$\Gamma(x) :=\int_{0}^{\infty}t^{x-1}e^{-t} \, dt.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 282 - Sep 25, 2017

No one answered this week’s problem. You can read my solution below.
Let $I(\alpha)$ represent the integral. By the trig substitution $x = \tan \theta$, $I(\alpha)$ becomes $\int_0^{\pi/2} \cos^{\alpha - 2}(\theta)\, d\theta$. Multiplying $I(\alpha)$ by $\Gamma(\alpha/2)$ yields the double integral

$$\int_0^\infty \int_0^{\frac{\pi}{2}} r^{\frac{\alpha}{2}-1}e^{-r}\cos^{\alpha-2}(\theta)\, d\theta\, dr$$

which can also be written

$$\int_0^\infty \int_0^{\frac{\pi}{2}} e^{-r\cos^2(\theta)} e^{-r\sin^2(\theta)} (r\cos^2(\theta))^{\frac{\alpha-3}{2}} (r\sin^2(\theta))^{-\frac{1}{2}} r\cos(\theta)\sin(\theta)\, d\theta\, dr$$

Letting $x = r\cos^2(\theta)$ and $y = r\sin^2(\theta)$, the double integral is transformed to

$$0.5 \int_0^\infty \int_0^\infty e^{-x}e^{-y} x^{\frac{\alpha-3}{2}} y^{-\frac{1}{2}}\, dx\, dy$$

which is the same as

$$0.5 \int_0^\infty e^{-x} x^{\frac{\alpha-3}{2}}\, dx \int_0^\infty e^{-y} y^{-\frac{1}{2}}\, dy$$

The integral with respect to $x$ is $\Gamma((\alpha-1)/2)$, and using the $u$-substitution $u = \sqrt{y}$, the integral with respect to $y$ is the same as

$$2\int_0^\infty e^{-u^2}\, du = \int_{-\infty}^\infty e^{-u^2}\, du = \sqrt{\pi}$$

In summary,

$$\Gamma\left(\frac{\alpha}{2}\right)I(\alpha) = 0.5\sqrt{\pi}\,\Gamma\left(\frac{\alpha-1}{2}\right)$$

Dividing both sides by $\Gamma(\alpha/2)$ results in

$$I(\alpha) = \frac{0.5\sqrt{\pi}\,\Gamma\left(\frac{\alpha-1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K