Evaluating $(-1)^k {3n \choose k}$ Sums

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sums
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the sum:

$$S_n =\sum_{k=0}^{n}(-1)^k{3n \choose k}, \;\;\;n=1,2,...$$
 
Mathematics news on Phys.org
Hint:

Use Pascal´s triangle.
 
Binomial Sum

Suggested solution:
Pascal´s triangle is constructed by the relation:

\[\binom{n}{k} = \binom{n-1}{k-1}+\binom{n-1}{k}\]

Using this in our expression yields a telescoping sum:

\[S_n = \sum_{k=0}^{n}(-1)^k\left ( \binom{3n-1}{k-1}+\binom{3n-1}{k} \right ) \\\\ =\binom{3n-1}{-1}+\binom{3n-1}{0}-\binom{3n-1}{0}-\binom{3n-1}{1}+\binom{3n-1}{1}+...+(-1)^n\binom{3n-1}{n} \\\\ = (-1)^n\binom{3n-1}{n}\]

- where I have used the definition \[\binom{m}{-1} = 0, \forall m \in \mathbb{Z}.\] for the first term in the sum.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K