Evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$

  • Context: MHB 
  • Thread starter Thread starter Greg
  • Start date Start date
Click For Summary
SUMMARY

The evaluation of the series $$\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$$ is achieved through the Taylor series expansion of $\ln(1-t)$, specifically substituting $t = \frac{1}{x^2}$. This leads to the expression $$-\frac{1}{2}\ln\left(1-\frac{1}{x^2}\right) = \sum_{n=1}^\infty \frac{1}{2nx^{2n}}$$, which converges for $|x| > 1$. The discussion confirms the validity of this approach and its convergence criteria.

PREREQUISITES
  • Taylor series expansion
  • Logarithmic functions
  • Convergence of infinite series
  • Understanding of complex variables
NEXT STEPS
  • Study the properties of Taylor series and their applications in series evaluation
  • Explore convergence tests for infinite series
  • Investigate the implications of logarithmic identities in series
  • Learn about the behavior of series in complex analysis
USEFUL FOR

Mathematicians, students studying calculus or analysis, and anyone interested in series convergence and evaluation techniques.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
 
Physics news on Phys.org
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
[sp]Start with the Taylor series expansion $\ln(1-t) = -t - \dfrac{t^2}2 - \dfrac{t^3}3 - \ldots$ (valid when $|t|<1$).

Substitute $t = \dfrac1{x^2}$: $\ln\Bigl(1-\dfrac1{x^2}\Bigr) = -\dfrac1{x^2} - \dfrac1{2x^4} - \dfrac1{3x^6} - \ldots.$

Therefore $$-\dfrac12\ln\Bigl(1-\dfrac1{x^2}\Bigr) = \dfrac1{2x^2} + \dfrac1{4x^4} + \dfrac1{6x^6} + \ldots = \sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$ (the sum converging when $|x|>1$).

[/sp]
 
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
 
Last edited:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.
 
lfdahl said:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.

fabulous!
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$

Hi Albert. I don't see how the above provides a solution. Can you clarify?
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
greg1313 said:
Hi Albert. I don't see how the above provides a solution. Can you clarify?
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$
$P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)$
$Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$$\dfrac {1}{2x^2-1}<S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
$( \left | x \right |>1)$
(from Opalg's solution):$S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})$
$P,Q$ are two infinite geometric series with ratio $\dfrac {1}{x^2} $ and $\dfrac{1}{2x^2}$ repectively
Opalg already has given the answer , I only give the range of $S$ ,infact they are quite close
 
Last edited:
Thanks for your participation. :)

My solution is effectively the same as lfdahl's, so I won't post it here.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
Replies
9
Views
2K
Replies
9
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K