MHB Evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$

  • Thread starter Thread starter Greg
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating the series $$\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$$ using the Taylor series expansion of $\ln(1-t)$. By substituting $t = \frac{1}{x^2}$, the series is shown to converge for $|x| > 1$ and is expressed as $$-\frac{1}{2}\ln\left(1 - \frac{1}{x^2}\right) = \sum_{n=1}^\infty \frac{1}{2nx^{2n}}$$. Participants share their solutions, with some seeking clarification on the steps involved. Overall, the series evaluation is confirmed through the logarithmic relationship established in the discussion.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
 
Mathematics news on Phys.org
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
[sp]Start with the Taylor series expansion $\ln(1-t) = -t - \dfrac{t^2}2 - \dfrac{t^3}3 - \ldots$ (valid when $|t|<1$).

Substitute $t = \dfrac1{x^2}$: $\ln\Bigl(1-\dfrac1{x^2}\Bigr) = -\dfrac1{x^2} - \dfrac1{2x^4} - \dfrac1{3x^6} - \ldots.$

Therefore $$-\dfrac12\ln\Bigl(1-\dfrac1{x^2}\Bigr) = \dfrac1{2x^2} + \dfrac1{4x^4} + \dfrac1{6x^6} + \ldots = \sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$ (the sum converging when $|x|>1$).

[/sp]
 
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
 
Last edited:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.
 
lfdahl said:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.

fabulous!
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$

Hi Albert. I don't see how the above provides a solution. Can you clarify?
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
greg1313 said:
Hi Albert. I don't see how the above provides a solution. Can you clarify?
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$
$P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)$
$Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$$\dfrac {1}{2x^2-1}<S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
$( \left | x \right |>1)$
(from Opalg's solution):$S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})$
$P,Q$ are two infinite geometric series with ratio $\dfrac {1}{x^2} $ and $\dfrac{1}{2x^2}$ repectively
Opalg already has given the answer , I only give the range of $S$ ,infact they are quite close
 
Last edited:
Thanks for your participation. :)

My solution is effectively the same as lfdahl's, so I won't post it here.
 
Back
Top