Evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$

  • Context: MHB 
  • Thread starter Thread starter Greg
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the infinite series $$\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$$, exploring its convergence and potential solutions through series expansions and substitutions. The scope includes mathematical reasoning and exploration of series convergence.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant proposes using the Taylor series expansion of $\ln(1-t)$ to evaluate the series, substituting $t = \frac{1}{x^2}$ to derive a form for the sum.
  • Another participant expresses confusion regarding the clarity of the proposed solution and requests further clarification.
  • A later reply indicates that their solution aligns with an earlier participant's approach, suggesting a shared understanding of the method used.

Areas of Agreement / Disagreement

Participants express differing levels of understanding regarding the proposed solution, with some seeking clarification while others appear to agree with the method presented. The discussion remains unresolved as to the clarity and completeness of the solution.

Contextual Notes

Some participants note the convergence of the series for $|x|>1$, but the implications of this condition are not fully explored or agreed upon.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
 
Physics news on Phys.org
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
[sp]Start with the Taylor series expansion $\ln(1-t) = -t - \dfrac{t^2}2 - \dfrac{t^3}3 - \ldots$ (valid when $|t|<1$).

Substitute $t = \dfrac1{x^2}$: $\ln\Bigl(1-\dfrac1{x^2}\Bigr) = -\dfrac1{x^2} - \dfrac1{2x^4} - \dfrac1{3x^6} - \ldots.$

Therefore $$-\dfrac12\ln\Bigl(1-\dfrac1{x^2}\Bigr) = \dfrac1{2x^2} + \dfrac1{4x^4} + \dfrac1{6x^6} + \ldots = \sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$ (the sum converging when $|x|>1$).

[/sp]
 
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
 
Last edited:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.
 
lfdahl said:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.

fabulous!
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$

Hi Albert. I don't see how the above provides a solution. Can you clarify?
 
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
greg1313 said:
Hi Albert. I don't see how the above provides a solution. Can you clarify?
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$
$P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)$
$Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$$\dfrac {1}{2x^2-1}<S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
$( \left | x \right |>1)$
(from Opalg's solution):$S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})$
$P,Q$ are two infinite geometric series with ratio $\dfrac {1}{x^2} $ and $\dfrac{1}{2x^2}$ repectively
Opalg already has given the answer , I only give the range of $S$ ,infact they are quite close
 
Last edited:
Thanks for your participation. :)

My solution is effectively the same as lfdahl's, so I won't post it here.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
1
Views
2K
Replies
9
Views
2K
Replies
9
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K