- #1
KDPhysics
- 74
- 23
- TL;DR Summary
- Can one use the Schrodinger picture propagator for a sudden, constant perturbation?
Consider an uncharged particle with spin one-half moving with speed ##v## in a region with magnetic field ##\textbf{B}=B\textbf{e}_z##. In a certain length ##L## of the particle's path, there is an additional, weak magnetic field ##\textbf{B}_\perp=B_\perp \textbf{e}_x##. Assuming the electron has magnetic moment ##\mu## then
$$
H(t) = H_0 + V(t)
$$
where ##H_0=-\mu B \sigma_z## and
$$
V(t)=\begin{cases}
-\mu B_\perp \sigma_x, \ \text{ for } 0<t<l/v\\
0, \ \text { otherwise}
\end{cases}
$$
Assuming the particle starts out in the ##|+\rangle## state (spin-up along the ##z##-axis) then I found using perturbation theory that the probability that the spin flips to ##|-\rangle## after time ##t>L/v## is
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
I am wondering how I could derive the result without assuming that ##B_\perp\ll B##?
My first instinct was to use the propagator to evolve the state from ##t=0## to ##t=L/v##:
\begin{align}
&e^{-iH(t)t/\hbar} = e^{i\mu\textbf{B}\cdot \boldsymbol{\sigma}t/\hbar} = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)\mathbb{1}+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B\sigma_z+B_\perp \sigma_z}{B'}\\
\implies & |+(t)\rangle = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)|+\rangle+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B|+\rangle+B_\perp |-\rangle}{B'}\\
\implies & |\langle-|+(t)\rangle|^2 = \bigg[\frac{B_\perp}{B'}\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\bigg]^2
\end{align}
where ##B'=\sqrt{B^2+B_\perp^2}##. Taking the ##B_\perp/B<<1## limit (perturbative limit) then I recover
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
as desired.
However, I'm not entirely sure if my approach of using the Schrödinger picture propagator ##U(t)=e^{-iHt/\hbar}## is correct. Indeed since ##H(t<0)## does not commute with ##H(t>0)##, there is no guarantee that the ##|+\rangle## state at time ##t=0^-## will not immediately jump and transition to some other state at ##t=0^+##, implying that assuming the state will be ##|+\rangle## at ##t=0^+## could be wrong. Why did my argument still yield the correct result?
$$
H(t) = H_0 + V(t)
$$
where ##H_0=-\mu B \sigma_z## and
$$
V(t)=\begin{cases}
-\mu B_\perp \sigma_x, \ \text{ for } 0<t<l/v\\
0, \ \text { otherwise}
\end{cases}
$$
Assuming the particle starts out in the ##|+\rangle## state (spin-up along the ##z##-axis) then I found using perturbation theory that the probability that the spin flips to ##|-\rangle## after time ##t>L/v## is
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
I am wondering how I could derive the result without assuming that ##B_\perp\ll B##?
My first instinct was to use the propagator to evolve the state from ##t=0## to ##t=L/v##:
\begin{align}
&e^{-iH(t)t/\hbar} = e^{i\mu\textbf{B}\cdot \boldsymbol{\sigma}t/\hbar} = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)\mathbb{1}+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B\sigma_z+B_\perp \sigma_z}{B'}\\
\implies & |+(t)\rangle = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)|+\rangle+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B|+\rangle+B_\perp |-\rangle}{B'}\\
\implies & |\langle-|+(t)\rangle|^2 = \bigg[\frac{B_\perp}{B'}\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\bigg]^2
\end{align}
where ##B'=\sqrt{B^2+B_\perp^2}##. Taking the ##B_\perp/B<<1## limit (perturbative limit) then I recover
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
as desired.
However, I'm not entirely sure if my approach of using the Schrödinger picture propagator ##U(t)=e^{-iHt/\hbar}## is correct. Indeed since ##H(t<0)## does not commute with ##H(t>0)##, there is no guarantee that the ##|+\rangle## state at time ##t=0^-## will not immediately jump and transition to some other state at ##t=0^+##, implying that assuming the state will be ##|+\rangle## at ##t=0^+## could be wrong. Why did my argument still yield the correct result?