Exact Sequences and Noetherian Rings - Proposition 3.1.2 - Berrick and Keating

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings Sequences
Click For Summary
SUMMARY

The forum discussion focuses on Proposition 3.1.2 from "An Introduction to Rings and Modules with K-theory in View" by A.J. Berrick and M.E. Keating, specifically regarding Noetherian rings and the properties of submodules. Participants clarify that if \( M \) is Noetherian, any submodule \( N' \) of \( M' \) is finitely generated due to the injectivity of the homomorphism \( \alpha \). The exactness of the sequence implies that \( \alpha(M') \cong M' \), establishing a rigorous framework for understanding the relationship between submodules and their finitely generated nature.

PREREQUISITES
  • Understanding of Noetherian rings and modules
  • Familiarity with exact sequences in module theory
  • Knowledge of homomorphisms and their properties
  • Ability to work with finitely generated modules
NEXT STEPS
  • Study the definition and properties of Noetherian modules
  • Learn about exact sequences and their implications in module theory
  • Explore the fundamental isomorphism theorem in the context of modules
  • Investigate the relationship between submodules and finitely generated modules
USEFUL FOR

Mathematicians, graduate students in algebra, and anyone studying module theory and its applications in abstract algebra will benefit from this discussion.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book "An Introduction to Rings and Modules with K-theory in View" by A.J. Berrick and M.E. Keating ... ...

I am currently focused on Chapter 3; Noetherian Rings and Polynomial Rings.

I need help with the proof of Proposition 3.1.2.

The statement and proof of Proposition 3.1.2 reads as follows (pages 109-110):https://www.physicsforums.com/attachments/4839
https://www.physicsforums.com/attachments/4840In the above text (at the start of the proof), Berrick and Keating write:" ... ... Suppose that $$M$$ is Noetherian. A submodule of $$M'$$ is isomorphic to a submodule of $$M$$, and so is finitely generated. ... ... "I have two questions ... ...

Question 1

How do we demonstrate, formally and rigorously, that there exists a submodule of $$M'$$ that is isomorphic to a submodule of $$M$$ ... ... ?Question 2

How, exactly (that is, formally and rigorously), do we know that the submodule of $$M'$$ (which is isomorphic to a submodule of $$M$$) is finitely generated ... (I know it sounds plausible ... but ... what is the formal demonstration of this fact) ... ..Hope someone can help ...

Peter
 
Physics news on Phys.org
By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$.

So if $N'$ is a submodule of $M'$, then $\alpha(N')$ is a submodule of $\alpha(M') \subseteq M$ isomorphic to $N'$.

It sounds as if your text author is using the *definition*:

A right $R$-module is Noetherian if any submodule is finitely-generated.

Since $M$ is Noetherian, and $\alpha(N')$ is a submodule of $M$, it follows that $\alpha(N')$ is finitely-generated, and so if $\{m_1,\dots,m_n\}$ is a finite generating set for $\alpha(N')$, then $\{\alpha^{-1}(m_1),\dots,\alpha^{-1}(m_n)\}$ is likewise a finite generating set for $N'$.
 
Deveno said:
By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$.

So if $N'$ is a submodule of $M'$, then $\alpha(N')$ is a submodule of $\alpha(M') \subseteq M$ isomorphic to $N'$.

It sounds as if your text author is using the *definition*:

A right $R$-module is Noetherian if any submodule is finitely-generated.

Since $M$ is Noetherian, and $\alpha(N')$ is a submodule of $M$, it follows that $\alpha(N')$ is finitely-generated, and so if $\{m_1,\dots,m_n\}$ is a finite generating set for $\alpha(N')$, then $\{\alpha^{-1}(m_1),\dots,\alpha^{-1}(m_n)\}$ is likewise a finite generating set for $N'$.
Thanks Deveno ... will be working through this shortly ...

Appreciate your help ...

I obviously need to revise exact sequences ...

Peter
 
Deveno said:
By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$.

So if $N'$ is a submodule of $M'$, then $\alpha(N')$ is a submodule of $\alpha(M') \subseteq M$ isomorphic to $N'$.

It sounds as if your text author is using the *definition*:

A right $R$-module is Noetherian if any submodule is finitely-generated.

Since $M$ is Noetherian, and $\alpha(N')$ is a submodule of $M$, it follows that $\alpha(N')$ is finitely-generated, and so if $\{m_1,\dots,m_n\}$ is a finite generating set for $\alpha(N')$, then $\{\alpha^{-1}(m_1),\dots,\alpha^{-1}(m_n)\}$ is likewise a finite generating set for $N'$.
Hi Deveno,

Just reflecting on your post ... making sure I fully understand what you have said ...

You write:

"... ... By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$. ... ... "

Could you explain exactly how/why it is the case that $\alpha$ being injective leads to $\alpha(M') \cong M'$ ... ...

Sorry to be a bit slow, but do need some clarification/explanation ... ...

Peter
 
Peter said:
Hi Deveno,

Just reflecting on your post ... making sure I fully understand what you have said ...

You write:

"... ... By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$. ... ... "

Could you explain exactly how/why it is the case that $\alpha$ being injective leads to $\alpha(M') \cong M'$ ... ...

Sorry to be a bit slow, but do need some clarification/explanation ... ...

Peter
***EDIT***

Hmm ... reflecting some more ...

To try to answer my own question ...

... ... to show that $\alpha(M') \cong M'$ we need to demonstrate an injective and surjective mapping between $$\alpha(M')$$ and $$M'$$ ... ...

BUT ... $$\alpha$$ itself is such a mapping ... since it is injective by definition of the exactness of the sequence concerned ... and, further, is of course, surjective on its image $$\alpha(M')$$ ...

Is that correct?

Peter
 
Yup.

You see, the "exactness" of a short exact sequence:

$0 \to A \to B \to C \to 0$

tells us a great deal.

First of all, $R$-modules have a "zero object" (the trivial module), for which there is only ONE possible $R$-linear map:

$0 \to A$ (namely, sending the only element of the trivial module to the additive identity of $A$).

There is also only one possible $R$-linear map $C \to 0$ (namely, the one that kills everything).

Exactness at the portion $0 \to A \to B$, means the map from $A$ to $B$ is injective, since the image of $A$ is the kernel of the map $0 \to A$, which is the $0$ of $A$.

Exactness of the portion $B \to C \to 0$ means the map $B \to C$ is surjective, since the kernel of the map $C \to 0$ is all of $C$, and this is (by exactness) the image of $B$.

Finally, exactness at the portion $A \to B \to C$ tells us that $C \cong B/\text{im }A$, by the fundamental isomorphism theorem.

In essence then, a short exact sequence embodies (up to isomorphism) the "canonical" short exact sequence:

$0 \to N \to M \to M/N \to 0$ (where $N \subseteq M$).

Typically, this let's us "transfer" information about $M$ to any $R$-module isomorphic to a submodule of $M$, and in certain cases, allows us to "recover" (or "reconstitute") information about a homomorphic image of $M$ by looking at pre-images under the homomorphism.
 
Deveno said:
Yup.

You see, the "exactness" of a short exact sequence:

$0 \to A \to B \to C \to 0$

tells us a great deal.

First of all, $R$-modules have a "zero object" (the trivial module), for which there is only ONE possible $R$-linear map:

$0 \to A$ (namely, sending the only element of the trivial module to the additive identity of $A$).

There is also only one possible $R$-linear map $C \to 0$ (namely, the one that kills everything).

Exactness at the portion $0 \to A \to B$, means the map from $A$ to $B$ is injective, since the image of $A$ is the kernel of the map $0 \to A$, which is the $0$ of $A$.

Exactness of the portion $B \to C \to 0$ means the map $B \to C$ is surjective, since the kernel of the map $C \to 0$ is all of $C$, and this is (by exactness) the image of $B$.

Finally, exactness at the portion $A \to B \to C$ tells us that $C \cong B/\text{im }A$, by the fundamental isomorphism theorem.

In essence then, a short exact sequence embodies (up to isomorphism) the "canonical" short exact sequence:

$0 \to N \to M \to M/N \to 0$ (where $N \subseteq M$).

Typically, this let's us "transfer" information about $M$ to any $R$-module isomorphic to a submodule of $M$, and in certain cases, allows us to "recover" (or "reconstitute") information about a homomorphic image of $M$ by looking at pre-images under the homomorphism.
Thanks for the brief tutorial, Deveno ...

Most helpful indeed ...

Thanks again,

Peter
 
Deveno said:
By exactness, $\text{ker }\alpha = \{0\}$, so $\alpha$ is injective. That is: $\alpha(M') \cong M'$.

So if $N'$ is a submodule of $M'$, then $\alpha(N')$ is a submodule of $\alpha(M') \subseteq M$ isomorphic to $N'$.

It sounds as if your text author is using the *definition*:

A right $R$-module is Noetherian if any submodule is finitely-generated.

Since $M$ is Noetherian, and $\alpha(N')$ is a submodule of $M$, it follows that $\alpha(N')$ is finitely-generated, and so if $\{m_1,\dots,m_n\}$ is a finite generating set for $\alpha(N')$, then $\{\alpha^{-1}(m_1),\dots,\alpha^{-1}(m_n)\}$ is likewise a finite generating set for $N'$.
Hi Deveno,

Just a further point of clarification and assurance ...

You write:

" ... ... if $N'$ is a submodule of $M'$, then $\alpha(N')$ is a submodule of $$\alpha(M')$$ ... ... "I have worked through the details and convinced myself that this is true ...

BUT ... you go on to claim that $$\alpha(N')$$ is a submodule of $$M$$ ...

My question is ... where/how have we shown that $$\alpha(N')$$ is a submodule of $$M$$ ... ?... ... ... ...

... reflecting ... presumably ... a submodule of a submodule of $$M$$ ... is a submodule of $$M$$ ... ... (it seems so from the definition of a submodule) ...

Is that correct?

Peter
 
Yes.
 

Similar threads

Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K