Hi, suppose we have an unidimensional finite square well potential and we want to expand an arbitrary wave function in terms of energy eigenfunctions but considering the possibility of bounded (discrete) AND unbounded (continue) states. How do you express the expansion?. The problem is that each set of eigenfuntions (correponding to bounded or unbounded states) is complete so i think i just can't add one set of eigenfunctions (with their coefficients) to the other because there would be no way of finding the coefficients.(adsbygoogle = window.adsbygoogle || []).push({});

To motivate this suposse we have an uncertainty in the energy (dE) such that <E>+dE > Vo and <E>-dE < Vo, where V0 is the depth of the well.

Thanks.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Expansion of a wave fuction in energy eigenfunctions

Loading...

Similar Threads - Expansion wave fuction | Date |
---|---|

I Normalisation constant expansion of spinor field | Jan 14, 2018 |

A Field Expansion in QFT | Jan 12, 2018 |

Plane wave expansion of massive vector boson | Oct 4, 2014 |

Scattering partial wave expansion question | Aug 3, 2012 |

About expansion of wave functions | Jan 10, 2012 |

**Physics Forums - The Fusion of Science and Community**