- #1
Cedric Chia
- 22
- 2
- TL;DR Summary
- Help find E[2^X] and E[2^-X] if X~Geom(p) and if X~Pois(lambda)
For the following distributions find $$E[2^X]$$ and $$E[2^{-X}]$$ if finite. In each case,clearly state for what values of the parameter the expectation is finite.
(a) $$X\sim Geom(p)$$
(b) $$X\sim Pois(\lambda)$$
My attempt:
Using LOTUS and $$E[X]=\sum_{k=0}^{\infty}kP(X=k)=\frac{1-p}{p}$$
thus
$$E[2^X]= \frac{1-p}{p} \sum_{k=0}^{\infty}\frac{2^k}{k}$$
and
$$E[2^{-X}]= \frac{1-p}{p} \sum_{k=0}^{\infty}\frac{1}{k2^k}$$
for $$X\sim Geom(p)$$
but the expected value in either case seems to be divergent, I don't know how to continue, please help.
(a) $$X\sim Geom(p)$$
(b) $$X\sim Pois(\lambda)$$
My attempt:
Using LOTUS and $$E[X]=\sum_{k=0}^{\infty}kP(X=k)=\frac{1-p}{p}$$
thus
$$E[2^X]= \frac{1-p}{p} \sum_{k=0}^{\infty}\frac{2^k}{k}$$
and
$$E[2^{-X}]= \frac{1-p}{p} \sum_{k=0}^{\infty}\frac{1}{k2^k}$$
for $$X\sim Geom(p)$$
but the expected value in either case seems to be divergent, I don't know how to continue, please help.
Last edited: