Expected value of X~Geom(p) given X+Y=z

  • Context: Undergrad 
  • Thread starter Thread starter BerriesAndCream
  • Start date Start date
  • Tags Tags
    Geometric Value
Click For Summary
SUMMARY

The expected value of X given Z=z, where X and Y are independent geometric random variables with parameter p, is calculated as E[X|Z=z] = z/2. This is derived from the conditional probability P(X=x|Z=z) = 1/(z-1), indicating a uniform distribution. The discussion confirms that E[X|Z=z] + E[Y|Z=z] equals z, reinforcing the relationship between the expected values of the two random variables. The trick question regarding which expected value is larger is addressed, concluding that both are equal due to the uniform distribution property.

PREREQUISITES
  • Understanding of geometric random variables
  • Familiarity with conditional probability
  • Knowledge of discrete uniform distribution
  • Ability to compute expected values
NEXT STEPS
  • Study the properties of geometric random variables and their distributions
  • Learn about conditional expectation in probability theory
  • Explore the derivation of expected values for discrete uniform distributions
  • Investigate applications of conditional probability in statistical modeling
USEFUL FOR

Statisticians, data scientists, and anyone involved in probability theory and statistical analysis will benefit from this discussion, particularly those working with geometric distributions and conditional expectations.

BerriesAndCream
Messages
7
Reaction score
2
TL;DR
finding a conditioned expected value
Hello everyone.

If X, Y are two independent geometric random variables of parameter p, and Z=X+Y, what's E[X|Z=z]?

I have calculated the distribution of P(Z=z) and I have then found that the conditional probability P(X=x|Z=z) equals 1/(z-1).
How can I now find the conditioned expected value?
 
Physics news on Phys.org
What is the value of ##E[X|Z=z]+E[Y|Z=z]##?

Which is the bigger of ##E[X|Z=z]## and ##E[Y|Z=z]## (trick question).
 
  • Like
Likes   Reactions: Gavran
andrewkirk said:
What is the value of ##E[X|Z=z]+E[Y|Z=z]##?

Which is the bigger of ##E[X|Z=z]## and ##E[Y|Z=z]## (trick question).
1. E[X|Z=z] + E[Y|Z=z] = E[X+Y|Z=z] = E[Z|Z=z] = z?
2. Is there a way of knowing?
 
Could it be that since P(X=x|Z=z) = 1/(z-1), which is an uniform distribution, the expected value I'm looking for can simply be found by using the formula for the expected value of the uniform distribution?

edit: I tried to do it that way, but I couldn't find the right answer. So i tried by using the formula for the expected value. What I did not realise at first is that I had to sum from x=1 to x=z-1, right? By doing so I get that E[X|Z=z]=
Σx=1z-1 x·P(X=x|Z=z) =
Σx=1z-1 x/(z-1) = 1/(z-1)·Σx=1z-1 x =
1/(z-1) · (z-1)(z-1+1)/2 = z/2.

Is this valid?
 
Last edited:
BerriesAndCream said:
By doing so I get that E[X|Z=z]=
Σx=1z-1 x·P(X=x|Z=z) =
Σx=1z-1 x/(z-1) = 1/(z-1)·Σx=1z-1 x =
1/(z-1) · (z-1)(z-1+1)/2 = z/2.

Is this valid?
Yes it is.
There is another approach as described by @andrewkirk in the post #2. The first question is answered in the post #3. What about the trick question? Is ## E [X|Z=z] ## bigger than ## E [Y|Z=z] ##? or Is ## E [Y|Z=z] ## bigger than ## E [X|Z=z] ##? or What is the third option?
 
BerriesAndCream said:
Could it be that since P(X=x|Z=z) = 1/(z-1), which is an uniform distribution, the expected value I'm looking for can simply be found by using the formula for the expected value of the uniform distribution?
Yes, it can be found by using a formula for calculating an expected value of a discrete uniform distribution.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K