- #1
mupsi
- 32
- 1
Hi everyone,
I use Wick's theorem to decompose expectation values of a string of bosonic creation and annihilation operators evaluated at the vacuum state. This can only be done when the time evolution is driven by a Hamiltonian of the form:
[tex]
H=\sum_{i,j}{\epsilon_{i,j} c^{\dagger}_{i}c_{j}} [/tex]
which follows from the functional field integral in the coherent state basis. Now I am being told, that WT can also be applied when the Hamiltonian contains quadratic terms that don't conserve particle number (c dagger, c dagger and c, c terms). Can anyone confirm this? I am still trying to figure out how that is supposed to lead to a gaussian exponential. I'd appreciate it if anyone can provide links or explain me why this is legitimate.
I use Wick's theorem to decompose expectation values of a string of bosonic creation and annihilation operators evaluated at the vacuum state. This can only be done when the time evolution is driven by a Hamiltonian of the form:
[tex]
H=\sum_{i,j}{\epsilon_{i,j} c^{\dagger}_{i}c_{j}} [/tex]
which follows from the functional field integral in the coherent state basis. Now I am being told, that WT can also be applied when the Hamiltonian contains quadratic terms that don't conserve particle number (c dagger, c dagger and c, c terms). Can anyone confirm this? I am still trying to figure out how that is supposed to lead to a gaussian exponential. I'd appreciate it if anyone can provide links or explain me why this is legitimate.