POTW Ext Functor on Noetherian Affine Schemes

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
For finitely generated modules M and N over a Noetherian ring R, the associated sheaf of the R-module Ext^q_R(M,N) is shown to be the Ext sheaf mathscr{E}xt^q_{\mathcal{O}_X}(\tilde{M},\tilde{N}) on the affine scheme X = Spec R. The proof utilizes the Grothendieck definition of cohomology through injective resolutions and establishes that the sheaf associated with an injective R module is also injective in the O_X category. It is demonstrated that the Tilda functor commutes with kernels and cokernels, allowing the reduction to the case of sheaf Hom. The final argument hinges on the fact that for finitely generated modules M, Hom commutes with localization, confirming that sheaf Ext is indeed Tilda of Ext. This establishes a crucial link between Ext functors in module theory and sheaf theory on Noetherian affine schemes.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##M## and ##N## be finitely generated modules over a Noetherian ring ##R##. For every ##R##-module ##S## let ##\tilde{S}## be the associated sheaf on the affine scheme ##X = \operatorname{Spec}R##. Show that for all ##q \ge 0##, the associated sheaf of the ##R##-module ##\operatorname{Ext}^q_R(M,N)## is the Ext sheaf ##\mathscr{E}xt^q_{\mathcal{O}_X}(\tilde{M},\tilde{N})##.
 
Physics news on Phys.org
Since ##M## is finite over Noetherian ring ##R##, there is a finitely generated free resolution ##\cdots \to L_1 \to L_0 \to M \to 0## for ##M##. Applying the tilde functor yields a resolution of ##\tilde{M}## by finite locally free ##\mathcal{O}_X##-modules ##\cdots \to \tilde{L}_1 \to \tilde{L}_0 \to \tilde{M} \to 0##. Hence ##\mathscr{E}xt^q_{\mathcal{O}_X}(\tilde{M}, \tilde{N})## is the ##q##-th cohomology of the complex ##\mathscr{H}om_{\mathcal{O}_X}(\tilde{L}^\cdot, \tilde{N})##. There is an natural isomorphism of complexes ##\mathscr{H}om_{\mathcal{O}_X}(\tilde{L}^\cdot, \tilde{N}) = \widetilde{\text{Hom}_{\mathcal{O}_X}(L^\cdot, N)}## and cohomology commutes with the tilde functor; furthermore, the ##q##th cohomology of ##\text{Hom}_{\mathcal{O}_X}(L^\cdot, N)## is ##\text{Ext}^q_R(M,N)##. Therefore ##\mathscr{E}xt^q_{\mathcal{O}_X}(\tilde{M}, \tilde{N}) \cong \widetilde{\text{Ext}^q_R(M,N)}##, as desired.
 
Last edited:
Using the Grothendieck definition of cohomology by injective resolutions, the fact that Tilda of an injective R module is an injective O_X module, that Tilda commutes with kernels and cokernels, and is a fully faithful equivalence from R modules to O_X modules, this seems to reduce to the case of "sheaf Hom", i.e. sheaf Ext^0, where it seems to follow from the fact that on finitely generated modules (actually we seem only to need M finitely generated), Hom commutes with localization.

I.e. to compute Ext, take an injective R module resolution J(*) of N, and apply Hom(M,_), to get a complex C = Hom(M,J(*)), whose cohomology is Ext*(M,N). Applying Tilda to C, gives a complex whose cohomology is Tilda of Ext, since Tilda preserves kernels and cokernels. But since Hom commutes with localization for finitely generated M, applying Tilda to C is the same as first applying Tilda to J, getting an injective O_X module resolution of NTilda, and then applying sheafHom(MTilda,_), to get the complex whose cohomology is sheafExt. Hence sheafExt is Tilda of Ext in this case.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
2K
Replies
37
Views
5K
  • · Replies 16 ·
Replies
16
Views
6K
  • · Replies 28 ·
Replies
28
Views
7K